Ejemplo n.º 1
0
def main(plaintexts, traces):
    cpa_attacker = Attacker(plaintexts)
    skey = cpa_attacker.obtain_full_private_key(traces, only_first_byte=False)

    # Our AES key:
    # [43, 126, 21, 22, 40, 174, 210, 166, 171, 247, 21, 136, 9, 207, 79, 60]

    # print(f"First found subkey: {skey[0]}")
    print(f"Found full key: {skey}")
Ejemplo n.º 2
0
    def test_obtain_full_private_key(self):
        # Import power traces for which we know the used key.
        key = np.load(self.TEST_DATA_LOC + "key.npy")
        power_samples = np.load(self.TEST_DATA_LOC + "traces.npy")[:-1]
        plaintexts = np.load(self.TEST_DATA_LOC + "plain.npy")

        # Set up the attacker and find the private key as a list of bytes.
        attacker = Attacker(plaintexts)
        computed_key_bytes = attacker.obtain_full_private_key(power_samples)

        # "key.npy" is stored as an array of identical keys, so get key[0]
        known_key_bytes = key[0]

        self.assertEqual(list(known_key_bytes), computed_key_bytes)
Ejemplo n.º 3
0
i = 0
for _ in range(ITERATIONS):
    for trace_amnt in TRACES_AMOUNTS:
        for step in SAMPLE_STEPS:

            indices = np.random.choice(np.arange(len(traces)),
                                       trace_amnt,
                                       replace=False)

            sampled_traces = traces[indices, start_point:end_point:step]
            sampled_plaintexts = plaintexts[indices, :]
            cpa_attacker = Attacker(sampled_plaintexts)

            # If we only obtain the first subkey, it is returned
            # as a singleton list.
            best_guess = cpa_attacker.obtain_full_private_key(
                sampled_traces, only_first_byte=False)

            ge = atk_analyser.compute_guessing_entropy(
                known_key, cpa_attacker.subkey_corr_coeffs)
            key_sr = int(ge == 0)
            subkey_sr = atk_analyser.compute_subkey_success_rate(
                known_key, best_guess)
            results.loc[i] = [trace_amnt, step, ge, key_sr, subkey_sr, FULL]
            i += 1
            print(
                f"Experiement {i}/{TOTAL_EXPIREMENTS} [trace amount:{trace_amnt}, step: {step}]:"
                f"GE: {ge}\tKEY SR: {key_sr}\tSUBKEY SR: {subkey_sr}")

results.to_csv(
    f"cpa{'_cm' if CM else ''}_{'full' if FULL else 'cropped'}_results.csv")