def main_gen(params, filenum):
    '''Calls gen_audio() to generate the audio signals, verifies that they meet
       the requirements, and writes the files to storage'''

    print("Generating file #" + str(filenum))

    clean_clipped_files = []
    clean_low_activity_files = []
    noise_clipped_files = []
    noise_low_activity_files = []

    while True:
        # generate clean speech
        clean, clean_source_files, clean_cf, clean_laf = \
            gen_audio(True, params, filenum)
        # generate noise
        noise, noise_source_files, noise_cf, noise_laf = \
            gen_audio(False, params, filenum, len(clean))

        clean_clipped_files += clean_cf
        clean_low_activity_files += clean_laf
        noise_clipped_files += noise_cf
        noise_low_activity_files += noise_laf

        # mix clean speech and noise
        # if specified, use specified SNR value
        if not params['randomize_snr']:
            snr = params['snr']
        # use a randomly sampled SNR value between the specified bounds
        else:
            snr = np.random.randint(params['snr_lower'], params['snr_upper'])
            
        clean_snr, noise_snr, noisy_snr, target_level = snr_mixer(params=params, 
                                                                  clean=clean, 
                                                                  noise=noise, 
                                                                  snr=snr)
        # Uncomment the below lines if you need segmental SNR and comment the above lines using snr_mixer
        #clean_snr, noise_snr, noisy_snr, target_level = segmental_snr_mixer(params=params, 
        #                                                                    clean=clean, 
        #                                                                    noise=noise, 
        #                                                                    snr=snr)
        # unexpected clipping
        if is_clipped(clean_snr) or is_clipped(noise_snr) or is_clipped(noisy_snr):       
            continue
        else:
            break

    # write resultant audio streams to files
    hyphen = '-'
    clean_source_filenamesonly = [i[:-4].split(os.path.sep)[-1] for i in clean_source_files]
    clean_files_joined = hyphen.join(clean_source_filenamesonly)[:MAXFILELEN]
    noise_source_filenamesonly = [i[:-4].split(os.path.sep)[-1] for i in noise_source_files]
    noise_files_joined = hyphen.join(noise_source_filenamesonly)[:MAXFILELEN]

    noisyfilename = clean_files_joined + '_' + noise_files_joined + '_snr' + \
                    str(snr) + '_fileid_' + str(filenum) + '.wav'
    cleanfilename = 'clean_fileid_'+str(filenum)+'.wav'
    noisefilename = 'noise_fileid_'+str(filenum)+'.wav'

    noisypath = os.path.join(params['noisyspeech_dir'], noisyfilename)
    cleanpath = os.path.join(params['clean_proc_dir'], cleanfilename)
    noisepath = os.path.join(params['noise_proc_dir'], noisefilename)

    audio_signals = [noisy_snr, clean_snr, noise_snr]
    file_paths = [noisypath, cleanpath, noisepath]
    
    for i in range(len(audio_signals)):
        try:
            audiowrite(file_paths[i], audio_signals[i], params['fs'])
        except Exception as e:
            print(str(e))
            pass

    return clean_source_files, clean_clipped_files, clean_low_activity_files, \
           noise_source_files, noise_clipped_files, noise_low_activity_files
Ejemplo n.º 2
0
def main(cfg):
    snr_lower = int(cfg["snr_lower"])
    snr_upper = int(cfg["snr_upper"])
    total_snrlevels = int(cfg["total_snrlevels"])

    clean_dir = os.path.join(os.path.dirname(__file__), 'clean_train')
    if cfg["speech_dir"] != 'None':
        clean_dir = cfg["speech_dir"]
    if not os.path.exists(clean_dir):
        assert False, ("Clean speech data is required")
    try:
        noise_dir = os.path.join(os.path.dirname(__file__), 'noise_train_new')
        if cfg["noise_dir"] != 'None':
            noise_dir = cfg["noise_dir"]
        if not os.path.exists(noise_dir):
            raise Exception("path does not exist")
        if not len(os.listdir(noise_dir)):
            raise Exception("folder is empty")
    except:
        res = input(
            "Can't find noise data. Do you want to run the audio slicer?\nEnter [Y]es [N]o\n"
        )
        if res.lower() in ["y", "yes", ""]:
            slicer()
            print("Sliced successfully.\n\n")

        else:
            input("Noise data is required.\nPress any key to exit.\n")
            sys.exit()

    fs = float(cfg["sampling_rate"])
    audioformat = cfg["audioformat"]
    total_hours = float(cfg["total_hours"])
    audio_length = float(cfg["audio_length"])
    silence_length = float(cfg["silence_length"])
    noisyspeech_dir = os.path.join(os.path.dirname(__file__), 'mix')
    if not os.path.exists(noisyspeech_dir):
        os.makedirs(noisyspeech_dir)
    clean_proc_dir = os.path.join(os.path.dirname(__file__), 's1')
    if not os.path.exists(clean_proc_dir):
        os.makedirs(clean_proc_dir)
    noise_proc_dir = os.path.join(os.path.dirname(__file__), 's2')
    if not os.path.exists(noise_proc_dir):
        os.makedirs(noise_proc_dir)

    total_secs = total_hours * 60 * 60
    total_samples = int(total_secs * fs)
    audio_length = int(audio_length * fs)
    SNR = np.linspace(snr_lower, snr_upper, total_snrlevels)
    cleanfilenames = glob.glob(os.path.join(clean_dir, audioformat))

    if cfg["noise_types_excluded"] == 'None':
        noisefilenames = glob.glob(os.path.join(noise_dir, audioformat))
    else:
        filestoexclude = cfg["noise_types_excluded"].split(',')
        noisefilenames = glob.glob(os.path.join(noise_dir, audioformat))
        for i in range(len(filestoexclude)):
            noisefilenames = [
                fn for fn in noisefilenames
                if not os.path.basename(fn).startswith(filestoexclude[i])
            ]

    filecounter = 0
    num_samples = 0

    while num_samples < total_samples:
        idx_s = np.random.randint(0, np.size(cleanfilenames))
        clean, fs = audioread(cleanfilenames[idx_s])

        if len(clean) == audio_length:
            clean = clean

        else:

            while len(clean) <= audio_length:
                idx_s = idx_s + 1
                if idx_s >= np.size(cleanfilenames) - 1:
                    idx_s = np.random.randint(0, np.size(cleanfilenames))
                newclean, fs = audioread(cleanfilenames[idx_s])
                cleanconcat = np.append(clean,
                                        np.zeros(int(fs * silence_length)))
                clean = np.append(cleanconcat, newclean)
        clean = clean[0:audio_length]
        idx_n = np.random.randint(0, np.size(noisefilenames))
        noise, fs = audioread(noisefilenames[idx_n])

        if len(noise) >= len(clean):
            noise = noise[0:len(clean)]

        else:

            while len(noise) <= len(clean):
                idx_n = idx_n + 1
                if idx_n >= np.size(noisefilenames) - 1:
                    idx_n = np.random.randint(0, np.size(noisefilenames))
                newnoise, fs = audioread(noisefilenames[idx_n])
                noiseconcat = np.append(noise,
                                        np.zeros(int(fs * silence_length)))
                noise = np.append(noiseconcat, newnoise)
        noise = noise[0:len(clean)]
        filecounter = filecounter + 1

        for i in range(np.size(SNR)):
            clean_snr, noise_snr, noisy_snr = snr_mixer(clean=clean,
                                                        noise=noise,
                                                        snr=SNR[i])
            noisyfilename = 'noisy' + str(filecounter) + '_SNRdb_' + str(
                SNR[i]) + noisefilenames[idx_n].split("\\")[-1].split(
                    ".")[0] + '.wav'
            cleanfilename = 'clnsp' + str(filecounter) + '_.wav'
            noisefilename = 'noise' + str(filecounter) + '_SNRdb_' + str(
                SNR[i]) + noisefilenames[idx_n].split("\\")[-1].split(
                    ".")[0] + '.wav'
            noisypath = os.path.join(noisyspeech_dir, noisyfilename)
            cleanpath = os.path.join(clean_proc_dir, cleanfilename)
            noisepath = os.path.join(noise_proc_dir, noisefilename)
            audiowrite(noisy_snr, fs, noisypath, norm=False)
            audiowrite(clean_snr, fs, cleanpath, norm=False)
            audiowrite(noise_snr, fs, noisepath, norm=False)
            num_samples = num_samples + len(noisy_snr)
def main(cfg):
    snr_lower = float(cfg["snr_lower"])
    snr_upper = float(cfg["snr_upper"])
    total_snrlevels = float(cfg["total_snrlevels"])

    clean_dir = os.path.join(os.path.dirname(__file__), 'clean_train')
    if cfg["speech_dir"] != 'None':
        clean_dir = cfg["speech_dir"]
    if not os.path.exists(clean_dir):
        assert False, ("Clean speech data is required")

    noise_dir = os.path.join(os.path.dirname(__file__), 'noise_train')
    if cfg["noise_dir"] != 'None':
        noise_dir = cfg["noise_dir"]
    if not os.path.exists(noise_dir):
        assert False, ("Noise data is required")

    fs = float(cfg["sampling_rate"])
    audioformat = cfg["audioformat"]
    total_hours = float(cfg["total_hours"])
    audio_length = float(cfg["audio_length"])
    silence_length = float(cfg["silence_length"])
    noisyspeech_dir = os.path.join(os.path.dirname(__file__),
                                   'NoisySpeech_training')
    if not os.path.exists(noisyspeech_dir):
        os.makedirs(noisyspeech_dir)
    clean_proc_dir = os.path.join(os.path.dirname(__file__),
                                  'CleanSpeech_training')
    if not os.path.exists(clean_proc_dir):
        os.makedirs(clean_proc_dir)
    noise_proc_dir = os.path.join(os.path.dirname(__file__), 'Noise_training')
    if not os.path.exists(noise_proc_dir):
        os.makedirs(noise_proc_dir)

    total_secs = total_hours * 60 * 60
    total_samples = int(total_secs * fs)
    audio_length = int(audio_length * fs)
    SNR = np.linspace(snr_lower, snr_upper, total_snrlevels)
    cleanfilenames = glob.glob(os.path.join(clean_dir, audioformat))
    if cfg["noise_types_excluded"] == 'None':
        noisefilenames = glob.glob(os.path.join(noise_dir, audioformat))
    else:
        filestoexclude = cfg["noise_types_excluded"].split(',')
        noisefilenames = glob.glob(os.path.join(noise_dir, audioformat))
        for i in range(len(filestoexclude)):
            noisefilenames = [
                fn for fn in noisefilenames
                if not os.path.basename(fn).startswith(filestoexclude[i])
            ]

    filecounter = 0
    num_samples = 0

    while num_samples < total_samples:
        idx_s = np.random.randint(0, np.size(cleanfilenames))
        clean, fs = audioread(cleanfilenames[idx_s])

        if len(clean) > audio_length:
            clean = clean

        else:

            while len(clean) <= audio_length:
                idx_s = idx_s + 1
                if idx_s >= np.size(cleanfilenames) - 1:
                    idx_s = np.random.randint(0, np.size(cleanfilenames))
                newclean, fs = audioread(cleanfilenames[idx_s])
                cleanconcat = np.append(clean,
                                        np.zeros(int(fs * silence_length)))
                clean = np.append(cleanconcat, newclean)

        idx_n = np.random.randint(0, np.size(noisefilenames))
        noise, fs = audioread(noisefilenames[idx_n])

        if len(noise) >= len(clean):
            noise = noise[0:len(clean)]

        else:

            while len(noise) <= len(clean):
                idx_n = idx_n + 1
                if idx_n >= np.size(noisefilenames) - 1:
                    idx_n = np.random.randint(0, np.size(noisefilenames))
                newnoise, fs = audioread(noisefilenames[idx_n])
                noiseconcat = np.append(noise,
                                        np.zeros(int(fs * silence_length)))
                noise = np.append(noiseconcat, newnoise)
        noise = noise[0:len(clean)]
        filecounter = filecounter + 1

        for i in range(np.size(SNR)):
            clean_snr, noise_snr, noisy_snr = snr_mixer(clean=clean,
                                                        noise=noise,
                                                        snr=SNR[i])
            noisyfilename = 'noisy' + str(filecounter) + '_SNRdb_' + str(
                SNR[i]) + '_clnsp' + str(filecounter) + '.wav'
            cleanfilename = 'clnsp' + str(filecounter) + '.wav'
            noisefilename = 'noisy' + str(filecounter) + '_SNRdb_' + str(
                SNR[i]) + '.wav'
            noisypath = os.path.join(noisyspeech_dir, noisyfilename)
            cleanpath = os.path.join(clean_proc_dir, cleanfilename)
            noisepath = os.path.join(noise_proc_dir, noisefilename)
            audiowrite(noisy_snr, fs, noisypath, norm=False)
            audiowrite(clean_snr, fs, cleanpath, norm=False)
            audiowrite(noise_snr, fs, noisepath, norm=False)
            num_samples = num_samples + len(noisy_snr)
Ejemplo n.º 4
0
from audiolib import audioread, audiowrite, snr_mixer
from os.path import isfile, join,  basename
import os
import numpy as np


"""
Given a source folder, add white-noise in a range of different SNR levels to all files in the source folder.
"""

if __name__=="__main__":

    source_folder = "clips"
    source_files = [join(source_folder, f) for f in os.listdir(source_folder) if isfile(join(source_folder, f))]
    output_folder = source_folder+"_snr"
    snr_min = 30
    snr_max = 50

    for f in source_files:
        clean, fs = audioread(f)
        # white-noise
        noise = np.random.normal(0, 1, len(clean))
        for i in range (snr_min,snr_max):
            clean_snr, noise_snr, noisy_snr = snr_mixer(clean=clean, noise=noise, snr=i)
            output_filename = join(output_folder,
                                   f'{i}S_{os.path.splitext(basename(f))[0]}.wav')
            audiowrite(noisy_snr, fs,output_filename, norm=False)