Ejemplo n.º 1
0
def split_frame_m():
    c = 343
    frame_count = 2048
    data, fs = load_audio_data(
        r'D:\projects\pyprojects\soundphase\calib\0\0.wav', 'wav')
    skip_time = int(fs * 1)
    data = data[skip_time:, :-1].T
    # search unit circle
    level = 4
    grid: np.ndarray = np.load(rf'grid/{level}.npz')['grid']
    # mic mem pos
    pos = cons_uca(0.043)
    for i in range(0, data.shape[1], frame_count):
        data_seg = data[:, i:i + frame_count]
        # 噪声不做,随便写的
        if np.max(abs(fft(data_seg[0] / len(data_seg[0])))) < 1:
            continue
        print('time: ', (skip_time + i) / fs)
        t1 = time.time()
        pair_tau, stack_fft = calculate_stack_fft_and_pairs_tau(
            data_seg, pos, grid, c)
        t2 = time.time()
        print('previous calculation time consumption: ', t2 - t1)
        t1 = time.time()
        E = srp_phat_m(data_seg, pos, stack_fft, pair_tau, fs)
        # E = srp_phat_previous_tau(data_seg, pos, grid, pairs_tau, fs)
        t2 = time.time()
        print('srp_phat time consumption: ', t2 - t1)
        sdevc = grid[np.argmax(E, axis=1)]  # source direction vector
        # print(sdevc)
        print('angle of  max val: ', np.rad2deg(vec2theta(sdevc)))
        print('=' * 50)
Ejemplo n.º 2
0
def split_frame():
    c = 343
    frame_count = 1024
    data, fs = load_audio_data(
        r'D:\projects\pyprojects\gesturerecord\location\sound\0.wav', 'wav')
    skip_time = int(fs * 1)
    data = data[skip_time:, :-1].T
    # search unit circle
    level = 3
    grid: np.ndarray = np.load(rf'grid/{level}_north.npz')['grid']
    # mic mem pos
    pos = cons_uca(0.043)
    # calculate tau previously
    # pairs_tau = calculate_pairs_tau(pos, grid, c)
    for i in range(0, data.shape[1], frame_count):
        data_seg = data[:, i:i + frame_count]
        # 噪声不做,随便写的
        if np.max(abs(fft(data_seg[0] / len(data_seg[0])))) < 10:
            continue
        print('time: ', (skip_time + i) / fs)
        t1 = time.time()
        E = srp_phat(data_seg, pos, grid, c, fs)
        # E = srp_phat_muti_thread(data, pos, grid, c, fs)
        # E = srp_phat_previous_tau(data_seg, pos, grid, pairs_tau, fs)
        t2 = time.time()
        print('srp_phat time consumption: ', t2 - t1)
        sdevc = grid[np.argmax(E, axis=1)]  # source direction vector
        # print(sdevc)
        print('angle of  max val: ', np.rad2deg(vec2theta(sdevc)))
        print('=' * 50)
Ejemplo n.º 3
0
def srp_fft_denoise_test():

    frame_len = 2048
    # 加窗窗口
    window = np.hanning(frame_len)
    # window = np.ones(frame_len)
    # window = np.hamming(frame_len)

    data, fs = load_audio_data(r'D:\projects\pyprojects\gesturerecord\location\20khz\0.wav', 'wav')
    data = data[fs * 1:, :-1].T
    data_filter = butter_bandpass_filter(data, 19e3, 21e3)

    # for f in data_filter:
    #     normalized_signal_fft(f)

    t_fs_n = 40000
    noise_data = data_filter[:, t_fs_n:t_fs_n+frame_len]
    t_fs_t = 48000 * 5 + 1000
    test_data = data_filter[:, t_fs_t:t_fs_t+frame_len]
    # denoise_fft(fft(test_data)/frame_len, fft(noise_data)/frame_len)

    mic_array_pos = cons_uca(0.043)
    c = 343
    level = 4
    grid = np.load(rf'grid/{level}_north.npz')['grid']
    noise_fft = fft(noise_data * window)
    E = srp_phat_denoise(test_data, mic_array_pos, grid, c, fs, noise_fft, window)
    sdevc = grid[np.argmax(E, axis=1)]  # source direction vector
    # print(sdevc)
    print('angle of  max val: ', np.rad2deg(vec2theta(sdevc)))
    print('=' * 50)
Ejemplo n.º 4
0
def extract_phasedata_from_audio_special_for_onemic(audio_file,
                                                    phasedata_save_file,
                                                    audio_type='wav',
                                                    mic_array=True):
    origin_data, fs = load_audio_data(audio_file, audio_type)
    fs = fs  # 采样率
    data = origin_data.reshape((-1, 8))
    data = data.T  # shape = (num_of_channels, all_frames)
    data = data[:, int(fs * DELAY_TIME):]
    mic_num = 0
    # 只用一个mic
    data = data[mic_num, :]
    data = data.reshape((1, -1))
    # 开始处理数据
    t = 0
    magnti_list = []
    for i in range(NUM_OF_FREQ):
        fc = F0 + i * STEP
        data_filter = butter_bandpass_filter(data, fc - 150, fc + 150)
        I_raw, Q_raw = get_cos_IQ_raw(data_filter, fc, fs)
        # 滤波+下采样
        I = move_average_overlap_filter(I_raw)
        Q = move_average_overlap_filter(Q_raw)
        # denoise
        decompositionQ = seasonal_decompose(Q.T, period=10, two_sided=False)
        trendQ = decompositionQ.trend
        decompositionI = seasonal_decompose(I.T, period=10, two_sided=False)
        trendI = decompositionI.trend

        trendQ = trendQ.T
        trendI = trendI.T

        assert trendI.shape == trendQ.shape
        if len(trendI.shape) == 1:
            trendI = trendI.reshape((1, -1))
            trendQ = trendQ.reshape((1, -1))

        trendQ = trendQ[:, 10:]
        trendI = trendI[:, 10:]

        magnti = get_phase(trendI, trendQ)  # 这里的展开目前没什么效果
        # plt.plot(magnti[0])
        # plt.show()
        assert magnti.shape[1] > 1
        # 用diff,和两次diff
        magnti_list.append(np.diff(magnti)[:, :-1])
        # plt.plot(np.diff(magnti).reshape(-1))
        # plt.show()
        magnti_list.append(np.diff(np.diff(magnti)))
    merged_u_p = np.array(magnti_list).reshape((NUM_OF_FREQ * 1 * 2, -1))
    print(merged_u_p.shape)
    # 压缩便于保存
    flattened_m_u_p = merged_u_p.flatten()
    # 由于长短不一,不能放在一起
    # np.savetxt(dataset_save_file, flattened_m_u_p.reshape(1, -1))
    np.savez_compressed(phasedata_save_file, phasedata=flattened_m_u_p)
    return 1
Ejemplo n.º 5
0
def compare():
    LENG = 2048
    data, fs = load_audio_data(r'D:\projects\pyprojects\gesturerecord\location\sound\0.wav', 'wav')
    # data = butter_bandpass_filter(data.T, 15e3, 23e3)
    data = data.T
    t = 3
    data = data[:-1, int(fs * t):int(fs * t) + LENG]
    #
    # for i, d in enumerate(data):
    #     plt.subplot(4, 2, i + 1)
    #     plt.plot(d)
    # plt.show()
    i = 0
    j = 1
    a = data[i]
    b = data[j]
    y = gcc_phat(a, b)
    print('ifft max ccor val: ', np.max(y))
    print('ifft delay of sample num: ', np.argmax(y))
    plt.figure()
    plt.plot(y)
    plt.title('ifft gcc')

    mic_array_pos = cons_uca(0.043)
    c = 343
    level = 4
    grid = np.load(rf'grid/{level}.npz')['grid']
    tau = get_steering_vector(mic_array_pos[i], mic_array_pos[j], c, grid)
    R = gcc_phat_search(a, b, fs, tau)

    # 画射线图
    # plot_angspect(R[0], grid, percentile=99)

    # r = R[0]
    # sorted_arg = np.argsort(r)[::-1]
    # print(r[sorted_arg])

    print('gccphat search max val: ', np.max(R))
    print('gccphat delay of sample num: ', tau[np.argmax(R)] * fs)
    max_p = grid[np.argmax(R)]
    print('point of  max val: ', max_p)
    print('angle of  max val: ', np.rad2deg(vec2theta([max_p])))
    plt.figure()
    plt.plot(R.reshape(-1))
    plt.title('gcc search')
    # plt.figure()
    # plt.plot(np.correlate(a,b,'full'))
    plt.show()
Ejemplo n.º 6
0
def generate_training_data_pcm(audio_file, dataset_save_file):
    origin_data, fs = load_audio_data(audio_file, 'pcm')
    nchannels = 1  # 声道数
    fs = fs  # 采样率
    # 开始处理数据
    t = 0
    f0 = 17350
    for win in range(CHUNK, len(origin_data), CHUNK):
        # 读取下一段数据
        data = origin_data[win - CHUNK:win + CHUNK]
        t = t + CHUNK / fs
        # print(f"time:{t}s")
        # 由于麦克风的原因只看2s之后的
        if t < DELAY_TIME:
            continue
        unwrapped_phase_list = []
        data = data.reshape((-1, nchannels))
        data = data.T  # shape = (num_of_channels, 2 * CHUNK)
        if data.shape[1] < 2 * CHUNK:
            continue
        # 处理数据,这里可以优化,还需要验证其正确性
        for i in range(NUM_OF_FREQ):
            fc = f0 + i * STEP
            data_filter = butter_bandpass_filter(data, fc - 250, fc + 250)
            I, Q = get_cos_IQ(data_filter, fc, fs)
            unwrapped_phase = get_phase(I, Q)  # 这里的展开目前没什么效果
            # plt.plot(unwrapped_phase[0])
            # plt.show()
            # 通过标准差判断是否在运动
            assert unwrapped_phase.shape[1] > 1
            u_p_stds = np.std(unwrapped_phase, axis=1)
            print(fc, np.mean(u_p_stds))
            if np.mean(u_p_stds) > STD_THRESHOLD:
                unwrapped_phase_list.append(unwrapped_phase)
        # 把8个频率的合并成一个矩阵 shape = (num_of_channels * NUM_OF_FREQ, CHUNK)
        if len(unwrapped_phase_list) != NUM_OF_FREQ:
            continue
        print(f"time:{t}s")
        merged_u_p = np.vstack(([u_p for u_p in unwrapped_phase_list]))
        # 压缩便于保存
        flattened_m_u_p = merged_u_p.flatten()
        with open(dataset_save_file, 'ab') as f:
            np.savetxt(f, flattened_m_u_p.reshape(1, -1))
Ejemplo n.º 7
0
def fft_denoise_test():

    frame_len = 2048
    # 加窗窗口
    window = np.hanning(frame_len)
    # window = np.ones(frame_len)
    # window = np.hamming(frame_len)

    data, fs = load_audio_data(r'D:\projects\pyprojects\gesturerecord\location\20khz\0.wav', 'wav')
    data = data[fs * 1:, :-1].T
    data_filter = butter_bandpass_filter(data, 19e3, 21e3)

    # for f in data_filter:
    #     normalized_signal_fft(f)

    t_fs_n = 40000
    noise_data = data_filter[:, t_fs_n:t_fs_n+frame_len]
    t_fs_t = 48000 * 5 + 1000
    test_data = data_filter[:, t_fs_t:t_fs_t+frame_len]
    # denoise_fft(fft(test_data)/frame_len, fft(noise_data)/frame_len)

    i = 0
    j = 1
    mic_array_pos = cons_uca(0.043)
    c = 343
    level = 4
    grid = np.load(rf'grid/{level}.npz')['grid']
    tau = get_steering_vector(mic_array_pos[i], mic_array_pos[j], c, grid)
    noise_fft = fft(noise_data * window)
    R = gcc_phat_search_fft_denoise(test_data[i], test_data[j], fs, tau, noise_fft[i], noise_fft[j], window)

    print('gccphat search max val: ', np.max(R))
    print('gccphat delay of sample num: ', tau[np.argmax(R)] * fs)
    max_p = grid[np.argmax(R)]
    print('point of  max val: ', max_p)
    print('angle of  max val: ', np.rad2deg(vec2theta([max_p])))
    plt.figure()
    plt.plot(R.reshape(-1))
    plt.title('gcc search')
    # plt.figure()
    # plt.plot(np.correlate(a,b,'full'))
    plt.show()
Ejemplo n.º 8
0
def beamform_on_raw_audio_data(filename):
    data, fs = load_audio_data(filename, 'wav')
    data = data.T
    data = data[:7, int(fs * DELAY_TIME):]

    a_angel = 240
    e_angel = 0
    two_d_angel = [[np.deg2rad(a_angel), np.deg2rad(e_angel)]]
    c = 343
    spacing = 0.043
    mic_array_pos = cons_uca(spacing)
    sd = steering_plane_wave(mic_array_pos, c, two_d_angel)
    beamformed_data = beamform_real(data, sd).reshape(1, -1)
    beamformed_data_2 = ump_8_beamform(data, 48000, two_d_angel).reshape(1, -1)
    phase_list = []
    for i in range(NUM_OF_FREQ):
        fc = F0 + i * STEP
        data_filter = butter_bandpass_filter(data, fc - 150, fc + 150)
        I_raw, Q_raw = get_cos_IQ_raw(data_filter, fc, fs)
        # 滤波+下采样
        I = move_average_overlap_filter(I_raw)
        Q = move_average_overlap_filter(Q_raw)
        decompositionQ = seasonal_decompose(Q.T, period=10, two_sided=False)
        trendQ = decompositionQ.trend
        decompositionI = seasonal_decompose(I.T, period=10, two_sided=False)
        trendI = decompositionI.trend

        trendQ = trendQ.T
        trendI = trendI.T
        # trendQ = Q
        # trendI = I
        assert trendI.shape == trendQ.shape
        if len(trendI.shape) == 1:
            trendI = trendI.reshape((1, -1))
            trendQ = trendQ.reshape((1, -1))

        # trendQ = trendQ[:, 10:]
        # trendI = trendI[:, 10:]
        trendQ = Q
        trendI = I
        # draw_circle(trendI[0], trendQ[0])
        raw_phase = get_phase(trendI, trendQ)
        '''
        对相位beamform
        '''
        noise = np.mean(raw_phase[:, 20:60], axis=1).reshape(-1, 1)
        print(noise.shape)
        raw_phase_denoised = raw_phase - noise

        bphase_denoised = beamform_real(raw_phase_denoised, sd).reshape(1, -1)

        def normalize_max_min(x):
            max = np.max(x)
            min = np.min(x)
            return (x - min) / (max - min)

        '''
        对beamformed signal求相位
        '''
        beamformed_data_filter = butter_bandpass_filter(
            beamformed_data, fc - 150, fc + 150)
        bI_raw, bQ_raw = get_cos_IQ_raw(beamformed_data_filter, fc, fs)
        bI = move_average_overlap_filter(bI_raw)
        bQ = move_average_overlap_filter(bQ_raw)
        bphase = get_phase(bI, bQ)

        beamformed_data_filter = butter_bandpass_filter(
            beamformed_data_2, fc - 150, fc + 150)
        bI_raw, bQ_raw = get_cos_IQ_raw(beamformed_data_filter, fc, fs)
        bI = move_average_overlap_filter(bI_raw)
        bQ = move_average_overlap_filter(bQ_raw)
        bphase_2 = get_phase(bI, bQ)

        plt.figure()
        plt.subplot(2, 1, 1)
        plt.plot(raw_phase[0])
        plt.subplot(2, 1, 2)
        plt.plot(bphase_denoised[0])
        plt.show()
Ejemplo n.º 9
0
def beamform_after_IQ(filename, start, dur):
    data, fs = load_audio_data(filename, 'wav')
    data = data.T
    data = data[:7, int(fs * DELAY_TIME):]
    # data = data[:7, start:start+dur]
    phase_list = []
    for i in range(NUM_OF_FREQ):
        fc = F0 + i * STEP
        data_filter = butter_bandpass_filter(data, fc - 150, fc + 150)
        I_raw, Q_raw = get_cos_IQ_raw(data_filter, fc, fs)
        # 滤波+下采样
        I = move_average_overlap_filter(I_raw)
        Q = move_average_overlap_filter(Q_raw)
        # I = butter_lowpass_filter(I_raw, 150)
        # Q = butter_lowpass_filter(Q_raw, 150)

        # I = I[:, 5:-5]
        # Q = Q[:, 5:-5]

        # plt.plot(I[0][5:-5])
        # plt.plot(Q[0][5:-5])
        # plt.show()
        # denoise
        decompositionQ = seasonal_decompose(Q.T, period=10, two_sided=False)
        trendQ = decompositionQ.trend
        decompositionI = seasonal_decompose(I.T, period=10, two_sided=False)
        trendI = decompositionI.trend

        trendQ = trendQ.T
        trendI = trendI.T
        # trendQ = Q
        # trendI = I
        assert trendI.shape == trendQ.shape
        if len(trendI.shape) == 1:
            trendI = trendI.reshape((1, -1))
            trendQ = trendQ.reshape((1, -1))

        # trendQ = trendQ[:, 10:]
        # trendI = trendI[:, 10:]
        trendQ = Q
        trendI = I
        # draw_circle(trendI[0], trendQ[0])
        raw_phase = get_phase(trendI, trendQ)

        exp_phase = trendI + 1j * trendQ
        '''
        去除噪声,减去平均值(尝试)
        '''
        mean_noise = np.mean(raw_phase[:1000], axis=1)

        # beamform
        a_angel = 120
        e_angel = 0
        two_d_angel = [[np.deg2rad(a_angel), np.deg2rad(e_angel)]]
        c = 343
        spacing = 0.043
        mic_array_pos = cons_uca(spacing)

        # sp = music(data, mic_array_pos, fc, c, np.arange(0, 360), np.arange(0, 30), 1)
        # # plt.plot(sp.reshape(-1))
        # plt.pcolormesh(sp)
        # plt.show()

        azumi = (0, 360)
        eleva = (0, 90)

        # beamscan_spectrum = np.zeros((azumi[1] - azumi[0], eleva[1] - eleva[0]))
        # # 估计
        # for angel_1 in range(azumi[0], azumi[1]):
        #     for angel_2 in range(eleva[0], eleva[1]):
        #         two_angel = [[np.deg2rad(angel_1), np.deg2rad(angel_2)]]
        #         sd = steering_plane_wave(mic_array_pos, c, two_angel)
        #         adjust = np.exp(-1j * 2 * np.pi * fc * sd)
        #         syn_signals = exp_phase * adjust.T
        #         # syn_signals = np.real(syn_signals)
        #         beamformed_signal = np.sum(syn_signals, axis=0)
        #         beamscan_spectrum[angel_1][angel_2] = np.sum(abs(beamformed_signal))
        # # return beamscan_spectrum
        # # plt.pcolormesh(beamscan_spectrum)
        # # plt.show()
        # plt.plot(beamscan_spectrum[:, 0])
        # plt.grid()
        # plt.show()

        sd = steering_plane_wave(mic_array_pos, c, two_d_angel)
        adjust = np.exp(-1j * 2 * np.pi * fc * sd).T
        assert exp_phase.shape[0] == adjust.shape[0]
        syn_signals = exp_phase * adjust
        beamformed_signal = np.sum(syn_signals, axis=0).reshape(1, -1)
        phase = get_phase(np.real(beamformed_signal),
                          np.imag(beamformed_signal))

        plt.show()

        plt.figure()
        plt.subplot(2, 1, 1)
        plt.plot(raw_phase[0])
        plt.subplot(2, 1, 2)
        plt.plot(phase[0])
        plt.show()

        phase_list.append(phase)
Ejemplo n.º 10
0
def extract_magndata_from_beamformed_audio(audio_file,
                                           phasedata_save_file,
                                           audio_type='pcm',
                                           mic_array=False):
    origin_data, fs = load_audio_data(audio_file, audio_type)
    fs = fs  # 采样率
    # 已经reshape过了为什么还要reshape
    if mic_array:
        data = origin_data.reshape((-1, N_CHANNELS + 1))
    else:
        data = origin_data.reshape((-1, N_CHANNELS))
    data = data.T  # shape = (num_of_channels, all_frames)
    data = data[:, int(fs * DELAY_TIME):]
    if mic_array:
        # 第八个声道不要
        data = data[:7, :]
    # beamform,角度?
    data = ump_8_beamform(data, fs, angel=[[np.pi * 4 / 3, 0]])
    assert data.shape[0] == 1
    # 开始处理数据
    t = 0
    magnti_list = []
    for i in range(NUM_OF_FREQ):
        fc = F0 + i * STEP
        data_filter = butter_bandpass_filter(data, fc - 150, fc + 150)
        I_raw, Q_raw = get_cos_IQ_raw(data_filter, fc, fs)
        # 滤波+下采样
        I = move_average_overlap_filter(I_raw)
        Q = move_average_overlap_filter(Q_raw)
        # denoise
        decompositionQ = seasonal_decompose(Q.T, period=10, two_sided=False)
        trendQ = decompositionQ.trend
        decompositionI = seasonal_decompose(I.T, period=10, two_sided=False)
        trendI = decompositionI.trend

        trendQ = trendQ.T
        trendI = trendI.T

        assert trendI.shape == trendQ.shape
        if len(trendI.shape) == 1:
            trendI = trendI.reshape((1, -1))
            trendQ = trendQ.reshape((1, -1))

        trendQ = trendQ[:, 10:]
        trendI = trendI[:, 10:]

        magnti = get_magnitude(trendI, trendQ)  # 这里的展开目前没什么效果
        # plt.plot(np.diff(magnti[0].reshape(-1)))
        # plt.show()
        assert magnti.shape[1] > 1
        # 用diff,和两次diff
        magnti_list.append(np.diff(magnti)[:, :-1])
        # plt.plot(np.diff(magnti).reshape(-1))
        # plt.show()
        magnti_list.append(np.diff(np.diff(magnti)))
    merged_u_p = np.array(magnti_list).reshape((NUM_OF_FREQ * 1 * 2, -1))
    print(merged_u_p.shape)
    # 压缩便于保存
    flattened_m_u_p = merged_u_p.flatten()
    # 由于长短不一,不能放在一起
    # np.savetxt(dataset_save_file, flattened_m_u_p.reshape(1, -1))
    np.savez_compressed(phasedata_save_file, phasedata=flattened_m_u_p)
    return 1
Ejemplo n.º 11
0
def extract_phasedata_from_audio(audio_file,
                                 phasedata_save_file,
                                 audio_type='pcm',
                                 mic_array=False):
    '''
    目前使用的是对相位取一次差分
    :param audio_file:
    :param phasedata_save_file:
    :param audio_type:
    :param mic_array:
    :return:
    '''
    origin_data, fs = load_audio_data(audio_file, audio_type)
    fs = fs  # 采样率
    # data = origin_data[int(fs * DELAY_TIME):]
    # data = data.reshape((-1, N_CHANNELS))
    # data = data.T  # shape = (num_of_channels, all_frames)
    if mic_array:
        data = origin_data.reshape((-1, N_CHANNELS + 1))
    else:
        data = origin_data.reshape((-1, N_CHANNELS))
    data = data.T  # shape = (num_of_channels, all_frames)
    data = data[:, int(fs * DELAY_TIME):]
    if mic_array:
        # 第八个声道不要
        data = data[:7, :]
    # 开始处理数据
    t = 0
    unwrapped_phase_list = []
    for i in range(NUM_OF_FREQ):
        fc = F0 + i * STEP
        data_filter = butter_bandpass_filter(data, fc - 150, fc + 150)
        I_raw, Q_raw = get_cos_IQ_raw(data_filter, fc, fs)
        # 滤波+下采样
        I = move_average_overlap_filter(I_raw)
        Q = move_average_overlap_filter(Q_raw)
        # denoise
        decompositionQ = seasonal_decompose(Q.T, period=10, two_sided=False)
        trendQ = decompositionQ.trend
        decompositionI = seasonal_decompose(I.T, period=10, two_sided=False)
        trendI = decompositionI.trend

        trendQ = trendQ.T
        trendI = trendI.T

        assert trendI.shape == trendQ.shape
        if len(trendI.shape) == 1:
            trendI = trendI.reshape((1, -1))
            trendQ = trendQ.reshape((1, -1))

        trendQ = trendQ[:, 10:]
        trendI = trendI[:, 10:]

        unwrapped_phase = get_phase(trendI, trendQ)  # 这里的展开目前没什么效果
        # plt.plot(unwrapped_phase[0])
        # plt.show()
        assert unwrapped_phase.shape[1] > 1
        # 用diff,和两次diff
        unwrapped_phase_list.append(np.diff(unwrapped_phase)[:, :-1])
        # plt.plot(np.diff(unwrapped_phase).reshape(-1))
        # plt.show()

        # unwrapped_phase_list.append(np.diff(np.diff(unwrapped_phase)))
    merged_u_p = np.array(unwrapped_phase_list).reshape(
        (NUM_OF_FREQ * N_CHANNELS * 1, -1))
    print(merged_u_p.shape)
    # 压缩便于保存
    flattened_m_u_p = merged_u_p.flatten()
    # 由于长短不一,不能放在一起
    # np.savetxt(dataset_save_file, flattened_m_u_p.reshape(1, -1))
    np.savez_compressed(phasedata_save_file, phasedata=flattened_m_u_p)
    return N_CHANNELS