Ejemplo n.º 1
0
    def test__different_imaging_without_mock_objects__customize_constructor_inputs(
        self
    ):

        psf = aa.kernel.ones(shape_2d=(7, 7), pixel_scales=3.0)
        imaging = aa.imaging(
            image=aa.array.ones(shape_2d=(19, 19), pixel_scales=3.0),
            psf=psf,
            noise_map=aa.array.full(
                fill_value=2.0, shape_2d=(19, 19), pixel_scales=3.0
            ),
        )
        mask = aa.mask.unmasked(
            shape_2d=(19, 19), pixel_scales=1.0, invert=True, sub_size=8
        )
        mask[9, 9] = False

        masked_imaging = aa.masked.imaging.manual(
            imaging=imaging, mask=mask, psf_shape_2d=(7, 7)
        )

        assert (masked_imaging.imaging.image.in_2d == np.ones((19, 19))).all()
        assert (masked_imaging.imaging.noise_map.in_2d == 2.0 * np.ones((19, 19))).all()
        assert (masked_imaging.psf.in_2d == np.ones((7, 7))).all()
        assert masked_imaging.convolver.kernel.shape_2d == (7, 7)
        assert (masked_imaging.image == np.array([1.0])).all()
        assert (masked_imaging.noise_map == np.array([2.0])).all()
Ejemplo n.º 2
0
    def test__image_and_model_are_identical__inversion_included__changes_certain_properties(
            self):

        mask = aa.mask.manual(
            mask_2d=np.array([[False, False], [False, False]]),
            sub_size=1,
            pixel_scales=(1.0, 1.0),
        )

        data = aa.masked.array.manual_1d(array=np.array([1.0, 2.0, 3.0, 4.0]),
                                         mask=mask)
        noise_map = aa.masked.array.manual_1d(array=np.array(
            [2.0, 2.0, 2.0, 2.0]),
                                              mask=mask)

        imaging = aa.imaging(image=data, noise_map=noise_map)

        masked_imaging = aa.masked.imaging(imaging=imaging, mask=mask)

        model_data = aa.masked.array.manual_1d(array=np.array(
            [1.0, 2.0, 3.0, 4.0]),
                                               mask=mask)

        inversion = mock_inversion.MockFitInversion(
            regularization_term=2.0,
            log_det_curvature_reg_matrix_term=3.0,
            log_det_regularization_matrix_term=4.0,
        )

        fit = aa.fit(masked_dataset=masked_imaging,
                     model_data=model_data,
                     inversion=inversion)

        assert fit.chi_squared == 0.0
        assert fit.reduced_chi_squared == 0.0
        assert fit.noise_normalization == np.sum(
            np.log(2 * np.pi * noise_map**2.0))
        assert fit.likelihood == -0.5 * (fit.chi_squared +
                                         fit.noise_normalization)

        assert fit.likelihood_with_regularization == -0.5 * (
            fit.chi_squared + 2.0 + fit.noise_normalization)
        assert fit.evidence == -0.5 * (fit.chi_squared + 2.0 + 3.0 - 4.0 +
                                       fit.noise_normalization)
        assert fit.figure_of_merit == fit.evidence
Ejemplo n.º 3
0
def make_imaging_7x7(
    image_7x7,
    psf_3x3,
    noise_map_7x7,
    background_noise_map_7x7,
    poisson_noise_map_7x7,
    exposure_time_map_7x7,
    background_sky_map_7x7,
):
    return aa.imaging(
        image=image_7x7,
        pixel_scales=image_7x7.pixel_scales,
        psf=psf_3x3,
        noise_map=noise_map_7x7,
        background_noise_map=background_noise_map_7x7,
        poisson_noise_map=poisson_noise_map_7x7,
        exposure_time_map=exposure_time_map_7x7,
        background_sky_map=background_sky_map_7x7,
        name="mock_imaging_7x7",
    )
Ejemplo n.º 4
0
def make_imaging_6x6():

    image = aa.array.full(shape_2d=(6, 6), fill_value=1.0)
    psf = aa.kernel.full(shape_2d=(3, 3), fill_value=1.0)
    noise_map = aa.array.full(shape_2d=(6, 6), fill_value=2.0)
    background_noise_map = aa.array.full(shape_2d=(6, 6), fill_value=3.0)
    poisson_noise_map = aa.array.full(shape_2d=(6, 6), fill_value=4.0)
    exposure_time_map = aa.array.full(shape_2d=(6, 6), fill_value=5.0)
    background_sky_map = aa.array.full(shape_2d=(6, 6), fill_value=6.0)

    return aa.imaging(
        image=image,
        pixel_scales=1.0,
        psf=psf,
        noise_map=noise_map,
        background_noise_map=background_noise_map,
        poisson_noise_map=poisson_noise_map,
        exposure_time_map=exposure_time_map,
        background_sky_map=background_sky_map,
        name="mock_imaging_6x6",
    )
Ejemplo n.º 5
0
import autoarray as aa
import autoarray.plot as aplt
import numpy as np

mask = aa.mask.circular(shape_2d=(7, 7), pixel_scales=0.3, radius=0.6)

imaging = aa.imaging(
    image=aa.array.ones(shape_2d=(7, 7), pixel_scales=0.3),
    noise_map=aa.array.ones(shape_2d=(7, 7), pixel_scales=0.3),
    psf=aa.kernel.ones(shape_2d=(3, 3), pixel_scales=0.3),
)

masked_imaging = aa.masked.imaging(imaging=imaging, mask=mask)

grid_7x7 = aa.grid.from_mask(mask=mask)

grid_9 = aa.grid.manual_1d(
    grid=[
        [0.6, -0.3],
        [0.5, -0.8],
        [0.2, 0.1],
        [0.0, 0.5],
        [-0.3, -0.8],
        [-0.6, -0.5],
        [-0.4, -1.1],
        [-1.2, 0.8],
        [-1.5, 0.9],
    ],
    shape_2d=(3, 3),
    pixel_scales=1.0,
)
Ejemplo n.º 6
0
import autoarray as aa
import autoarray.plot as aplt

array = aa.array.ones(shape_2d=(31, 31), pixel_scales=(1.0, 1.0), sub_size=1)
array[0] = 3.0

kernel = aa.kernel.ones(shape_2d=(3, 3), pixel_scales=(1.0, 1.0))
kernel[0] = 3.0

imaging = aa.imaging(image=array, noise_map=array, psf=kernel)

# aplt.imaging.image(imaging=imaging)

aplt.imaging.subplot_imaging(imaging=imaging)
Ejemplo n.º 7
0
    def test__15_grid__no_sub_grid(self):

        mask = np.array([
            [True, True, True, True, True, True, True],
            [True, True, True, True, True, True, True],
            [True, False, False, False, False, False, True],
            [True, False, False, False, False, False, True],
            [True, False, False, False, False, False, True],
            [True, True, True, True, True, True, True],
            [True, True, True, True, True, True, True],
        ])

        mask = aa.mask.manual(mask_2d=mask, pixel_scales=1.0, sub_size=1)

        # There is no sub-grid, so our grid are just the masked_image grid (note the NumPy weighted_data structure
        # ensures this has no sub-gridding)
        grid = aa.masked.grid.manual_1d(
            grid=np.array([
                [0.9, -0.9],
                [1.0, -1.0],
                [1.1, -1.1],
                [0.9, 0.9],
                [1.0, 1.0],
                [1.1, 1.1],
                [-0.01, 0.01],
                [0.0, 0.0],
                [0.01, 0.01],
                [-0.9, -0.9],
                [-1.0, -1.0],
                [-1.1, -1.1],
                [-0.9, 0.9],
                [-1.0, 1.0],
                [-1.1, 1.1],
            ]),
            mask=mask,
        )

        pix = aa.pix.Rectangular(shape=(3, 3))

        mapper = pix.mapper_from_grid_and_sparse_grid(
            grid=grid, sparse_grid=None, inversion_uses_border=False)

        assert mapper.is_image_plane_pixelization == False
        assert mapper.pixelization_grid.shape_2d_scaled == pytest.approx(
            (2.2, 2.2), 1.0e-4)
        assert mapper.pixelization_grid.origin == pytest.approx((0.0, 0.0),
                                                                1.0e-4)

        assert (mapper.mapping_matrix == np.array([
            [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
            [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
            [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
            [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
            [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
            [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
            [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0],
            [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0],
            [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0],
            [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0],
            [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0],
            [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0],
            [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0],
            [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0],
            [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0],
        ])).all()
        assert mapper.shape_2d == (3, 3)

        reg = aa.reg.Constant(coefficient=1.0)
        regularization_matrix = reg.regularization_matrix_from_mapper(
            mapper=mapper)

        assert (regularization_matrix == np.array([
            [2.00000001, -1.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0],
            [-1.0, 3.00000001, -1.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0],
            [0.0, -1.0, 2.00000001, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0],
            [-1.0, 0.0, 0.0, 3.00000001, -1.0, 0.0, -1.0, 0.0, 0.0],
            [0.0, -1.0, 0.0, -1.0, 4.00000001, -1.0, 0.0, -1.0, 0.0],
            [0.0, 0.0, -1.0, 0.0, -1.0, 3.00000001, 0.0, 0.0, -1.0],
            [0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 2.00000001, -1.0, 0.0],
            [0.0, 0.0, 0.0, 0.0, -1.0, 0.0, -1.0, 3.00000001, -1.0],
            [0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, -1.0, 2.00000001],
        ])).all()

        image = aa.array.ones(shape_2d=(7, 7))
        noise_map = aa.array.ones(shape_2d=(7, 7))
        psf = aa.kernel.no_blur()

        imaging = aa.imaging(image=image, noise_map=noise_map, psf=psf)

        masked_data = aa.masked.imaging(imaging=imaging, mask=mask)

        inversion = aa.inversion(masked_dataset=masked_data,
                                 mapper=mapper,
                                 regularization=reg)

        assert (
            inversion.blurred_mapping_matrix == mapper.mapping_matrix).all()
        assert (inversion.regularization_matrix == regularization_matrix).all()
        assert inversion.mapped_reconstructed_image == pytest.approx(
            np.ones(15), 1.0e-4)
Ejemplo n.º 8
0
    def test__3x3_simple_grid__include_mask_with_offset_centre(self):

        mask = aa.mask.manual(
            mask_2d=np.array([
                [True, True, True, True, True, True, True],
                [True, True, True, True, False, True, True],
                [True, True, True, False, False, False, True],
                [True, True, True, True, False, True, True],
                [True, True, True, True, True, True, True],
                [True, True, True, True, True, True, True],
                [True, True, True, True, True, True, True],
            ]),
            pixel_scales=1.0,
            sub_size=1,
        )

        grid = np.array([[2.0, 1.0], [1.0, 0.0], [1.0, 1.0], [1.0, 2.0],
                         [0.0, 1.0]])

        grid = aa.masked.grid.manual_1d(grid=grid, mask=mask)

        pix = aa.pix.VoronoiMagnification(shape=(3, 3))
        sparse_grid = grids.SparseGrid.from_grid_and_unmasked_2d_grid_shape(
            grid=grid, unmasked_sparse_shape=pix.shape)

        pixelization_grid = aa.grid_voronoi(
            grid_1d=sparse_grid.sparse,
            nearest_pixelization_1d_index_for_mask_1d_index=sparse_grid.
            sparse_1d_index_for_mask_1d_index,
        )

        mapper = pix.mapper_from_grid_and_sparse_grid(
            grid=grid,
            sparse_grid=pixelization_grid,
            inversion_uses_border=False)

        assert mapper.is_image_plane_pixelization == True
        assert mapper.pixelization_grid.shape_2d_scaled == pytest.approx(
            (2.0, 2.0), 1.0e-4)
        assert (mapper.pixelization_grid == sparse_grid.sparse).all()
        #   assert mapper.pixelization_grid.origin == pytest.approx((1.0, 1.0), 1.0e-4)

        assert isinstance(mapper, mappers.MapperVoronoi)

        assert (mapper.mapping_matrix == np.array([
            [1.0, 0.0, 0.0, 0.0, 0.0],
            [0.0, 1.0, 0.0, 0.0, 0.0],
            [0.0, 0.0, 1.0, 0.0, 0.0],
            [0.0, 0.0, 0.0, 1.0, 0.0],
            [0.0, 0.0, 0.0, 0.0, 1.0],
        ])).all()

        reg = aa.reg.Constant(coefficient=1.0)
        regularization_matrix = reg.regularization_matrix_from_mapper(
            mapper=mapper)

        assert (regularization_matrix == np.array([
            [3.00000001, -1.0, -1.0, -1.0, 0.0],
            [-1.0, 3.00000001, -1.0, 0.0, -1.0],
            [-1.0, -1.0, 4.00000001, -1.0, -1.0],
            [-1.0, 0.0, -1.0, 3.00000001, -1.0],
            [0.0, -1.0, -1.0, -1.0, 3.00000001],
        ])).all()

        image = aa.array.ones(shape_2d=(7, 7))
        noise_map = aa.array.ones(shape_2d=(7, 7))
        psf = aa.kernel.no_blur()

        imaging = aa.imaging(image=image, noise_map=noise_map, psf=psf)

        masked_data = aa.masked.imaging(imaging=imaging, mask=mask)

        inversion = aa.inversion(masked_dataset=masked_data,
                                 mapper=mapper,
                                 regularization=reg)

        assert (
            inversion.blurred_mapping_matrix == mapper.mapping_matrix).all()
        assert (inversion.regularization_matrix == regularization_matrix).all()
        assert inversion.mapped_reconstructed_image == pytest.approx(
            np.ones(5), 1.0e-4)
Ejemplo n.º 9
0
    def test__5_simple_grid__include_sub_grid(self):

        mask = np.array([
            [True, True, True, True, True, True, True],
            [True, True, True, True, True, True, True],
            [True, True, True, False, True, True, True],
            [True, True, False, False, False, True, True],
            [True, True, True, False, True, True, True],
            [True, True, True, True, True, True, True],
            [True, True, True, True, True, True, True],
        ])

        mask = aa.mask.manual(mask_2d=mask, pixel_scales=2.0, sub_size=2)

        # Assume a 2x2 sub-grid, so each of our 5 masked_image-pixels are split into 4.
        # The grid below is unphysical in that the (0.0, 0.0) terms on the end of each sub-grid probably couldn't
        # happen for a real lens calculation. This is to make a mapping_matrix matrix which explicitly tests the
        # sub-grid.
        grid = aa.masked.grid.manual_1d(
            grid=np.array([
                [1.0, -1.0],
                [1.0, -1.0],
                [1.0, -1.0],
                [1.0, 1.0],
                [1.0, 1.0],
                [1.0, 1.0],
                [-1.0, -1.0],
                [-1.0, -1.0],
                [-1.0, -1.0],
                [-1.0, 1.0],
                [-1.0, 1.0],
                [-1.0, 1.0],
                [0.0, 0.0],
                [0.0, 0.0],
                [0.0, 0.0],
                [0.0, 0.0],
                [0.0, 0.0],
                [0.0, 0.0],
                [0.0, 0.0],
                [0.0, 0.0],
            ]),
            mask=mask,
        )

        pix = aa.pix.Rectangular(shape=(3, 3))

        mapper = pix.mapper_from_grid_and_sparse_grid(
            grid=grid, sparse_grid=None, inversion_uses_border=False)

        assert mapper.is_image_plane_pixelization == False
        assert mapper.pixelization_grid.shape_2d_scaled == pytest.approx(
            (2.0, 2.0), 1.0e-4)
        assert mapper.pixelization_grid.origin == pytest.approx((0.0, 0.0),
                                                                1.0e-4)

        assert (mapper.mapping_matrix == np.array([
            [0.75, 0.0, 0.25, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
            [0.0, 0.0, 0.5, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0],
            [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.25, 0.0, 0.75],
            [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0],
            [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0],
        ])).all()
        assert mapper.shape_2d == (3, 3)

        reg = aa.reg.Constant(coefficient=1.0)
        regularization_matrix = reg.regularization_matrix_from_mapper(
            mapper=mapper)

        assert (regularization_matrix == np.array([
            [2.00000001, -1.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0],
            [-1.0, 3.00000001, -1.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0],
            [0.0, -1.0, 2.00000001, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0],
            [-1.0, 0.0, 0.0, 3.00000001, -1.0, 0.0, -1.0, 0.0, 0.0],
            [0.0, -1.0, 0.0, -1.0, 4.00000001, -1.0, 0.0, -1.0, 0.0],
            [0.0, 0.0, -1.0, 0.0, -1.0, 3.00000001, 0.0, 0.0, -1.0],
            [0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 2.00000001, -1.0, 0.0],
            [0.0, 0.0, 0.0, 0.0, -1.0, 0.0, -1.0, 3.00000001, -1.0],
            [0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, -1.0, 2.00000001],
        ])).all()

        image = aa.array.ones(shape_2d=(7, 7))
        noise_map = aa.array.ones(shape_2d=(7, 7))
        psf = aa.kernel.no_blur()

        imaging = aa.imaging(image=image, noise_map=noise_map, psf=psf)

        masked_data = aa.masked.imaging(imaging=imaging, mask=mask)

        inversion = aa.inversion(masked_dataset=masked_data,
                                 mapper=mapper,
                                 regularization=reg)

        assert (
            inversion.blurred_mapping_matrix == mapper.mapping_matrix).all()
        assert (inversion.regularization_matrix == regularization_matrix).all()
        assert inversion.mapped_reconstructed_image == pytest.approx(
            np.ones(5), 1.0e-4)
Ejemplo n.º 10
0
    def test__image_and_model_are_identical__no_masking__check_values_are_correct(
            self):

        mask = aa.mask.manual(
            mask_2d=np.array([[False, False], [False, False]]),
            sub_size=1,
            pixel_scales=(1.0, 1.0),
        )

        data = aa.masked.array.manual_1d(array=np.array([1.0, 2.0, 3.0, 4.0]),
                                         mask=mask)
        noise_map = aa.masked.array.manual_1d(array=np.array(
            [2.0, 2.0, 2.0, 2.0]),
                                              mask=mask)

        imaging = aa.imaging(image=data, noise_map=noise_map)

        masked_imaging = aa.masked.imaging(imaging=imaging, mask=mask)

        model_data = aa.masked.array.manual_1d(array=np.array(
            [1.0, 2.0, 3.0, 4.0]),
                                               mask=mask)

        fit = aa.fit(masked_dataset=masked_imaging, model_data=model_data)

        assert (fit.mask == np.array([[False, False], [False, False]])).all()

        assert (fit.image.in_1d == np.array([1.0, 2.0, 3.0, 4.0])).all()
        assert (fit.image.in_2d == np.array([[1.0, 2.0], [3.0, 4.0]])).all()

        assert (fit.noise_map.in_1d == np.array([2.0, 2.0, 2.0, 2.0])).all()
        assert (fit.noise_map.in_2d == np.array([[2.0, 2.0], [2.0,
                                                              2.0]])).all()

        assert (fit.signal_to_noise_map.in_1d == np.array([0.5, 1.0, 1.5,
                                                           2.0])).all()
        assert (fit.signal_to_noise_map.in_2d == np.array([[0.5, 1.0],
                                                           [1.5, 2.0]])).all()

        assert (fit.model_image.in_1d == np.array([1.0, 2.0, 3.0, 4.0])).all()
        assert (fit.model_image.in_2d == np.array([[1.0, 2.0], [3.0,
                                                                4.0]])).all()

        assert (fit.residual_map.in_1d == np.array([0.0, 0.0, 0.0, 0.0])).all()
        assert (fit.residual_map.in_2d == np.array([[0.0, 0.0], [0.0,
                                                                 0.0]])).all()

        assert (fit.normalized_residual_map.in_1d == np.array(
            [0.0, 0.0, 0.0, 0.0])).all()
        assert (fit.normalized_residual_map.in_2d == np.array([[0.0, 0.0],
                                                               [0.0,
                                                                0.0]])).all()

        assert (fit.chi_squared_map.in_1d == np.array([0.0, 0.0, 0.0,
                                                       0.0])).all()
        assert (fit.chi_squared_map.in_2d == np.array([[0.0, 0.0],
                                                       [0.0, 0.0]])).all()

        assert fit.chi_squared == 0.0
        assert fit.reduced_chi_squared == 0.0
        assert fit.noise_normalization == np.sum(
            np.log(2 * np.pi * noise_map**2.0))
        assert fit.likelihood == -0.5 * (fit.chi_squared +
                                         fit.noise_normalization)
Ejemplo n.º 11
0
import autoarray as aa
import autoarray.plot as aplt

grid_7x7 = aa.grid.uniform(shape_2d=(7, 7), pixel_scales=1.0)
rectangular_grid = aa.grid_rectangular.overlay_grid(grid=grid_7x7, shape_2d=(3, 3))
rectangular_mapper = aa.mapper(grid=grid_7x7, pixelization_grid=rectangular_grid)

image = aa.array.ones(shape_2d=(7, 7), pixel_scales=1.0)
image[0:4] = 5.0
noise_map = aa.array.ones(shape_2d=(7, 7), pixel_scales=1.0)
imaging = aa.imaging(image=image, noise_map=noise_map)

aplt.mapper.subplot_image_and_mapper(
    image=imaging,
    mapper=rectangular_mapper,
    include=aplt.Include(
        inversion_grid=False, inversion_border=True, inversion_pixelization_grid=False
    ),
    image_pixel_indexes=[0, 1, 2, 3],
    source_pixel_indexes=[[3, 4], [5]],
)