Ejemplo n.º 1
0
def test_target_is_dict(source_gaussian, target_gaussian, prior):
    source = af.CollectionPriorModel(collection=af.CollectionPriorModel(
        gaussian=source_gaussian))
    target = af.CollectionPriorModel(collection=dict(gaussian=target_gaussian))
    target.take_attributes(source)

    assert target.collection.gaussian.centre == prior
Ejemplo n.º 2
0
def make_gaussian_phase(n_components):
    if n_components == 1:
        return Phase(
            phase_name="phase_1_gaussians",
            profiles=af.CollectionPriorModel(gaussian_0=profile_models.Gaussian)
            )

    elif n_components == 2:
        return Phase(
            phase_name="phase_2_gaussians",
            profiles=af.CollectionPriorModel(gaussian_0=profile_models.Gaussian, gaussian_1=profile_models.Gaussian)
            )
    elif n_components == 3:
        return Phase(
            phase_name="phase_3_gaussians",
            profiles=af.CollectionPriorModel(gaussian_0=profile_models.Gaussian, gaussian_1=profile_models.Gaussian, gaussian_2=profile_models.Gaussian)
            )
    elif n_components == 4:
        return Phase(
            phase_name="phase_4_gaussians",
            profiles=af.CollectionPriorModel(gaussian_0=profile_models.Gaussian, gaussian_1=profile_models.Gaussian, gaussian_2=profile_models.Gaussian, 
                                              gaussian_3=profile_models.Gaussian)
            )
    elif n_components == 5:
        return Phase(
            phase_name="phase_5_gaussians",
            profiles=af.CollectionPriorModel(gaussian_0=profile_models.Gaussian, gaussian_1=profile_models.Gaussian, gaussian_2=profile_models.Gaussian, 
                                              gaussian_3=profile_models.Gaussian, gaussian_4=profile_models.Gaussian)
            )
Ejemplo n.º 3
0
def test_collection():
    identifier = af.CollectionPriorModel(
        gaussian=af.PriorModel(Gaussian, centre=af.UniformPrior())).identifier
    assert identifier == af.CollectionPriorModel(
        gaussian=af.PriorModel(Gaussian, centre=af.UniformPrior())).identifier
    assert identifier != af.CollectionPriorModel(gaussian=af.PriorModel(
        Gaussian, centre=af.UniformPrior(upper_limit=0.5))).identifier
Ejemplo n.º 4
0
def test_tuple_in_collection(source_gaussian, target_gaussian, prior):
    source_gaussian.centre = (prior, 1.0)

    source = af.CollectionPriorModel(gaussian=source_gaussian)
    target = af.CollectionPriorModel(gaussian=target_gaussian)

    target.take_attributes(source)
    assert target.gaussian.centre == (prior, 1.0)
Ejemplo n.º 5
0
def test_tuple_in_instance_in_collection(target_gaussian, prior):
    # noinspection PyTypeChecker
    source_gaussian = af.Gaussian(centre=(prior, 1.0))

    source = af.CollectionPriorModel(gaussian=source_gaussian)
    target = af.CollectionPriorModel(gaussian=target_gaussian)

    target.take_attributes(source)
    assert target.gaussian.centre == (prior, 1.0)
Ejemplo n.º 6
0
def test_instance():
    identifier = af.CollectionPriorModel(
        gaussian=Gaussian()
    ).identifier
    assert identifier == af.CollectionPriorModel(
        gaussian=Gaussian()
    ).identifier
    assert identifier != af.CollectionPriorModel(
        gaussian=Gaussian(
            centre=0.5
        )
    ).identifier
Ejemplo n.º 7
0
def test_unlabelled_in_collection(
        source_gaussian,
        target_gaussian,
        prior
):
    target = af.CollectionPriorModel(
        [target_gaussian]
    )
    source = af.CollectionPriorModel(
        [source_gaussian]
    )
    target.take_attributes(
        source
    )

    assert target[0].centre == prior
Ejemplo n.º 8
0
    def test__extracted_fits_from_instance_and_line_ci(self, dataset_line_7,
                                                       mask_1d_7_unmasked,
                                                       traps_x1, ccd,
                                                       clocker_1d):

        model = af.CollectionPriorModel(
            cti=af.Model(ac.CTI1D, traps=traps_x1, ccd=ccd),
            hyper_noise=af.Model(ac.ci.HyperCINoiseCollection),
        )

        masked_line_ci = dataset_line_7.apply_mask(mask=mask_1d_7_unmasked)

        post_cti_data = clocker_1d.add_cti(data=masked_line_ci.pre_cti_data,
                                           trap_list=traps_x1,
                                           ccd=ccd)

        analysis = ac.AnalysisDatasetLine(dataset_line=masked_line_ci,
                                          clocker=clocker_1d)

        instance = model.instance_from_unit_vector([])

        fit_analysis = analysis.fit_from_instance(instance=instance)

        fit = ac.FitDatasetLine(dataset_line=masked_line_ci,
                                post_cti_data=post_cti_data)

        assert fit.dataset.data.shape == (7, )
        assert fit_analysis.log_likelihood == pytest.approx(fit.log_likelihood)
Ejemplo n.º 9
0
    def test__log_likelihood_via_analysis__matches_manual_fit(
            self, imaging_ci_7x7, pre_cti_data_7x7, traps_x1, ccd,
            parallel_clocker_2d):

        model = af.CollectionPriorModel(
            cti=af.Model(ac.CTI2D, parallel_traps=traps_x1, parallel_ccd=ccd),
            hyper_noise=af.Model(ac.ci.HyperCINoiseCollection),
        )

        analysis = ac.AnalysisImagingCI(dataset_ci=imaging_ci_7x7,
                                        clocker=parallel_clocker_2d)

        instance = model.instance_from_unit_vector([])

        log_likelihood_via_analysis = analysis.log_likelihood_function(
            instance=instance)

        post_cti_data = parallel_clocker_2d.add_cti(
            data=pre_cti_data_7x7.native,
            parallel_trap_list=traps_x1,
            parallel_ccd=ccd)

        fit = ac.ci.FitImagingCI(dataset=analysis.dataset_ci,
                                 post_cti_data=post_cti_data)

        assert fit.log_likelihood == log_likelihood_via_analysis
Ejemplo n.º 10
0
    def test_list_prior_model(self, prior_model):
        list_prior_model = af.CollectionPriorModel([prior_model])
        list_prior_model_copy = deepcopy(list_prior_model)
        assert list_prior_model == list_prior_model_copy

        list_prior_model[0].centre_0 = af.UniformPrior()

        assert list_prior_model != list_prior_model_copy
Ejemplo n.º 11
0
    def test_prior_model_override(self):
        mock_components_1 = af.PriorModel(
            af.m.MockComponents,
            components_0=af.CollectionPriorModel(
                light=af.m.MockChildTuplex2()),
            components_1=af.CollectionPriorModel(mass=af.m.MockChildTuplex3),
        )
        mock_components_2 = af.PriorModel(
            af.m.MockComponents,
            components_0=af.CollectionPriorModel(light=af.m.MockChildTuplex2),
            components_1=af.CollectionPriorModel(mass=af.m.MockChildTuplex3()),
        )

        result = mock_components_1 + mock_components_2

        assert result.components_1.mass == mock_components_1.components_1.mass
        assert result.components_0.light == mock_components_2.components_0.light
Ejemplo n.º 12
0
def make_pipeline(
    phase_folders=None,
    sub_size=2,
    signal_to_noise_limit=None,
    bin_up_factor=None,
    optimizer_class=af.MultiNest,
):

    ### SETUP PIPELINE AND PHASE NAMES, TAGS AND PATHS ###

    # We setup the pipeline name using the tagging module. In this case, the pipeline name is not given a tag and
    # will be the string specified below However, its good practise to use the 'tag.' function below, incase
    # a pipeline does use customized tag names.

    pipeline_name = "pipeline_initialize__x1_gaussian"

    pipeline_tag = toy.pipeline_tagging.pipeline_tag_from_pipeline_settings()

    # This function uses the phase folders and pipeline name to set up the output directory structure,
    # e.g. 'autolens_workspace/output/pipeline_name/pipeline_tag/phase_name/phase_tag/'

    phase_folders.append(pipeline_name)
    phase_folders.append(pipeline_tag)

    ### PHASE 1 ###

    # In phase 1, we will fit the Gaussian profile, where we:

    # 1) Set our priors on the Gaussian's (y,x) centre such that we assume the image is centred around the Gaussian.

    gaussian = af.PriorModel(toy.SphericalGaussian)
    gaussian.centre_0 = af.GaussianPrior(mean=0.0, sigma=0.1)
    gaussian.centre_1 = af.GaussianPrior(mean=0.0, sigma=0.1)

    phase1 = toy.PhaseImaging(
        phase_name="phase_1__x1_gaussian",
        phase_folders=phase_folders,
        gaussians=af.CollectionPriorModel(gaussian_0=gaussian),
        sub_size=sub_size,
        signal_to_noise_limit=signal_to_noise_limit,
        bin_up_factor=bin_up_factor,
        optimizer_class=optimizer_class,
    )

    # You'll see these lines throughout all of the example pipelines. They are used to make MultiNest sample the \
    # non-linear parameter space faster (if you haven't already, checkout 'tutorial_7_multinest_black_magic' in
    # 'howtolens/chapter_2_lens_modeling'.

    # Fitting the lens galaxy and source galaxy from uninitialized priors often risks MultiNest getting stuck in a
    # local maxima, especially for the image in this example which actually has two source galaxies. Therefore, whilst
    # I will continue to use constant efficiency mode to ensure fast run time, I've upped the number of live points
    # and decreased the sampling efficiency from the usual values to ensure the non-linear search is robust.

    phase1.optimizer.const_efficiency_mode = True
    phase1.optimizer.n_live_points = 20
    phase1.optimizer.sampling_efficiency = 0.5

    return toy.PipelineDataset(pipeline_name, phase1)
Ejemplo n.º 13
0
def test_is_only_model():
    collection = af.CollectionPriorModel(gaussian=af.PriorModel(af.Gaussian),
                                         gaussian_2=af.PriorModel(af.Gaussian))

    assert collection.is_only_model(af.Gaussian) is True

    collection.other = af.PriorModel(af.m.MockClassx2)

    assert collection.is_only_model(af.Gaussian) is False
Ejemplo n.º 14
0
def test_no_free_parameters():
    collection = af.CollectionPriorModel(gaussian=af.Model(
        af.Gaussian,
        centre=1.0,
        normalization=1.0,
        sigma=1.0,
    ))
    assert collection.prior_count == 0
    assert collection.has_model(af.Gaussian) is False
Ejemplo n.º 15
0
def make_frozen_collection():
    model = af.CollectionPriorModel(
        gaussian=af.PriorModel(
            af.Gaussian
        )
    )

    model.freeze()
    return model
Ejemplo n.º 16
0
def test_observables():
    model = af.PriorModel(ts.Species,
                          observables=af.CollectionPriorModel(
                              one=ts.Observable, two=ts.Observable))

    assert model.prior_count == 5

    instance = model.instance_from_prior_medians()
    assert isinstance(instance.observables["one"], ts.Observable)
Ejemplo n.º 17
0
    def test_prior_model_override(self):
        galaxy_1 = af.PriorModel(
            mock.MockComponents,
            components_0=af.CollectionPriorModel(light=mock_real.EllProfile()),
            components_1=af.CollectionPriorModel(
                mass=mock_real.EllMassProfile),
        )
        galaxy_2 = af.PriorModel(
            mock.MockComponents,
            components_0=af.CollectionPriorModel(light=mock_real.EllProfile),
            components_1=af.CollectionPriorModel(
                mass=mock_real.EllMassProfile()),
        )

        result = galaxy_1 + galaxy_2

        assert result.components_1.mass == galaxy_1.components_1.mass
        assert result.components_0.light == galaxy_2.components_0.light
Ejemplo n.º 18
0
def test_missing_from_source(
        target_gaussian,
        prior
):
    target_gaussian.centre = prior

    target_gaussian.take_attributes(
        af.CollectionPriorModel()
    )
    assert target_gaussian.centre == prior
Ejemplo n.º 19
0
    def test_non_trivial_equality(self):

        mock_components = af.PriorModel(
            af.m.MockComponents,
            components_0=af.CollectionPriorModel(
                mock_cls_0=af.m.MockChildTuplex2),
            components_1=af.CollectionPriorModel(
                mock_cls_2=af.m.MockChildTuplex3),
        )

        model_mapper = af.ModelMapper()
        model_mapper.mock_components = mock_components
        model_mapper_copy = deepcopy(model_mapper)

        assert model_mapper == model_mapper_copy

        model_mapper.mock_components.components_0.tup_0 = af.UniformPrior()

        assert model_mapper != model_mapper_copy
Ejemplo n.º 20
0
    def test__parallel_and_serial_checks_raise_exception(self, imaging_ci_7x7):

        model = af.CollectionPriorModel(cti=af.Model(
            ac.CTI2D,
            parallel_traps=[
                ac.TrapInstantCapture(density=1.1),
                ac.TrapInstantCapture(density=1.1),
            ],
            parallel_ccd=ac.CCDPhase(),
        ))

        analysis = ac.AnalysisImagingCI(
            dataset_ci=imaging_ci_7x7,
            clocker=None,
            settings_cti=ac.SettingsCTI2D(parallel_total_density_range=(1.0,
                                                                        2.0)),
        )

        instance = model.instance_from_prior_medians()

        with pytest.raises(exc.PriorException):
            analysis.log_likelihood_function(instance=instance)

        model = af.CollectionPriorModel(cti=af.Model(
            ac.CTI2D,
            serial_traps=[
                ac.TrapInstantCapture(density=1.1),
                ac.TrapInstantCapture(density=1.1),
            ],
            serial_ccd=ac.CCDPhase(),
        ))

        analysis = ac.AnalysisImagingCI(
            dataset_ci=[imaging_ci_7x7],
            clocker=None,
            settings_cti=ac.SettingsCTI2D(serial_total_density_range=(1.0,
                                                                      2.0)),
        )

        instance = model.instance_from_prior_medians()

        with pytest.raises(exc.PriorException):
            analysis.log_likelihood_function(instance=instance)
Ejemplo n.º 21
0
    def test_add_children(self):
        galaxy_1 = af.PriorModel(
            mock.MockComponents,
            components_0=af.CollectionPriorModel(light_1=mock_real.EllProfile),
            components_1=af.CollectionPriorModel(
                mass_1=mock_real.EllMassProfile),
        )
        galaxy_2 = af.PriorModel(
            mock.MockComponents,
            components_0=af.CollectionPriorModel(light_2=mock_real.EllProfile),
            components_1=af.CollectionPriorModel(
                mass_2=mock_real.EllMassProfile),
        )

        result = galaxy_1 + galaxy_2

        assert result.components_0.light_1 == galaxy_1.components_0.light_1
        assert result.components_0.light_2 == galaxy_2.components_0.light_2

        assert result.components_1.mass_1 == galaxy_1.components_1.mass_1
        assert result.components_1.mass_2 == galaxy_2.components_1.mass_2
Ejemplo n.º 22
0
    def __init__(self, cls=Species, **kwargs):
        """
        Prior model for a species in a matrix that has defined relationships with other species.

        Parameters
        ----------
        cls
            The class of the species
        kwargs
        """
        super().__init__(cls, **kwargs)
        self.interactions = af.CollectionPriorModel()
Ejemplo n.º 23
0
 def test_parameter_name_distinction(self):
     mm = af.ModelMapper()
     mm.ls = af.CollectionPriorModel([
         af.PriorModel(af.m.MockClassRelativeWidth),
         af.PriorModel(af.m.MockClassRelativeWidth),
     ])
     assert mm.model_component_and_parameter_names == [
         "ls_0_one",
         "ls_0_two",
         "ls_0_three",
         "ls_1_one",
         "ls_1_two",
         "ls_1_three",
     ]
Ejemplo n.º 24
0
    def test_add_children(self):
        mock_components_1 = af.PriorModel(
            af.m.MockComponents,
            components_0=af.CollectionPriorModel(
                mock_cls_0=af.m.MockChildTuplex2),
            components_1=af.CollectionPriorModel(
                mock_cls_2=af.m.MockChildTuplex3),
        )
        mock_components_2 = af.PriorModel(
            af.m.MockComponents,
            components_0=af.CollectionPriorModel(
                mock_cls_1=af.m.MockChildTuplex2),
            components_1=af.CollectionPriorModel(
                mock_cls_3=af.m.MockChildTuplex3),
        )

        result = mock_components_1 + mock_components_2

        assert result.components_0.mock_cls_0 == mock_components_1.components_0.mock_cls_0
        assert result.components_0.mock_cls_1 == mock_components_2.components_0.mock_cls_1

        assert result.components_1.mock_cls_2 == mock_components_1.components_1.mock_cls_2
        assert result.components_1.mock_cls_3 == mock_components_2.components_1.mock_cls_3
Ejemplo n.º 25
0
    def test__make_result__result_line_is_returned(self, dataset_line_7,
                                                   pre_cti_data_7, traps_x1,
                                                   ccd, clocker_1d):
        model = af.CollectionPriorModel(
            cti=af.Model(ac.CTI1D, traps=traps_x1, ccd=ccd),
            hyper_noise=af.Model(ac.ci.HyperCINoiseCollection),
        )

        analysis = ac.AnalysisDatasetLine(dataset_line=dataset_line_7,
                                          clocker=clocker_1d)

        search = mock.MockSearch(name="test_search")

        result = search.fit(model=model, analysis=analysis)

        assert isinstance(result, ResultDatasetLine)
def make_pipeline(slam, settings):

    pipeline_name = "pipeline_source[parametric]"
    """
    This pipeline is tagged according to whether:

        1) Hyper-fitting settings (galaxies, sky, background noise) are used.
        2) The lens galaxy mass model includes an `ExternalShear`.
        3) The source model determined from `SetupSourceParametric` (e.g. `bulge_prior_model`, `disk_prior_model`, 
           etc.)
    """

    path_prefix = slam.path_prefix_from(slam.path_prefix, pipeline_name,
                                        slam.source_parametric_tag)
    """
    Phase 1: Fit the lens`s `MassProfile`'s and source galaxy.
    """

    phase1 = al.PhaseImaging(
        search=af.DynestyStatic(name="phase[1]_mass[total]_source[parametric]",
                                n_live_points=200,
                                walks=10),
        galaxies=af.CollectionPriorModel(
            lens=al.GalaxyModel(
                redshift=slam.redshift_lens,
                mass=slam.pipeline_source_parametric.setup_mass.
                mass_prior_model,
                shear=slam.pipeline_source_parametric.setup_mass.
                shear_prior_model,
            ),
            source=al.GalaxyModel(
                redshift=slam.redshift_source,
                bulge=slam.pipeline_source_parametric.setup_source.
                bulge_prior_model,
                disk=slam.pipeline_source_parametric.setup_source.
                disk_prior_model,
                envelope=slam.pipeline_source_parametric.setup_source.
                envelope_prior_model,
            ),
        ),
        settings=settings,
    )

    phase1 = phase1.extend_with_hyper_phase(setup_hyper=slam.setup_hyper,
                                            include_hyper_image_sky=True)

    return al.PipelineDataset(pipeline_name, path_prefix, None, phase1)
Ejemplo n.º 27
0
    def test_keyword_arguments(self):
        prior_model = af.CollectionPriorModel(one=af.m.MockClassx2,
                                              two=af.m.MockClassx2(1, 2))

        assert len(prior_model.direct_prior_model_tuples) == 1
        assert len(prior_model) == 2

        instance = prior_model.instance_for_arguments({
            prior_model.one.one: 0.1,
            prior_model.one.two: 0.2
        })

        assert instance.one.one == 0.1
        assert instance.one.two == 0.2

        assert instance.two.one == 1
        assert instance.two.two == 2
Ejemplo n.º 28
0
    def test__make_result__result_imaging_is_returned(self, imaging_ci_7x7,
                                                      pre_cti_data_7x7,
                                                      traps_x1, ccd,
                                                      parallel_clocker_2d):
        model = af.CollectionPriorModel(
            cti=af.Model(ac.CTI2D, parallel_traps=traps_x1, parallel_ccd=ccd),
            hyper_noise=af.Model(ac.ci.HyperCINoiseCollection),
        )

        analysis = ac.AnalysisImagingCI(dataset_ci=imaging_ci_7x7,
                                        clocker=parallel_clocker_2d)

        search = mock.MockSearch(name="test_search")

        result = search.fit(model=model, analysis=analysis)

        assert isinstance(result, ResultImagingCI)
Ejemplo n.º 29
0
    def test__masks_available_as_property(
        self,
        analysis_imaging_ci_7x7,
        samples_with_result,
        parallel_clocker_2d,
        traps_x1,
        ccd,
    ):
        model = af.CollectionPriorModel(
            cti=af.Model(ac.CTI2D, parallel_traps=traps_x1, parallel_ccd=ccd)
        )
        result = res.ResultDataset(
            samples=samples_with_result,
            analysis=analysis_imaging_ci_7x7,
            model=model,
            search=None,
        )

        assert (result.mask == np.full(fill_value=False, shape=(7, 7))).all()
Ejemplo n.º 30
0
    def test__full_and_extracted_fits_from_instance_and_imaging_ci(
            self, imaging_ci_7x7, mask_2d_7x7_unmasked, traps_x1, ccd,
            parallel_clocker_2d):

        model = af.CollectionPriorModel(
            cti=af.Model(ac.CTI2D, parallel_traps=traps_x1, parallel_ccd=ccd),
            hyper_noise=af.Model(ac.ci.HyperCINoiseCollection),
        )

        masked_imaging_ci = imaging_ci_7x7.apply_mask(
            mask=mask_2d_7x7_unmasked)
        masked_imaging_ci = masked_imaging_ci.apply_settings(
            settings=ac.ci.SettingsImagingCI(parallel_pixels=(0, 1)))

        post_cti_data = parallel_clocker_2d.add_cti(
            data=masked_imaging_ci.pre_cti_data,
            parallel_trap_list=traps_x1,
            parallel_ccd=ccd,
        )

        analysis = ac.AnalysisImagingCI(dataset_ci=masked_imaging_ci,
                                        clocker=parallel_clocker_2d)

        instance = model.instance_from_unit_vector([])

        fit_analysis = analysis.fit_from_instance(instance=instance)

        fit = ac.ci.FitImagingCI(dataset=masked_imaging_ci,
                                 post_cti_data=post_cti_data)

        assert fit.image.shape == (7, 1)
        assert fit_analysis.log_likelihood == pytest.approx(fit.log_likelihood)

        fit_full_analysis = analysis.fit_full_dataset_from_instance(
            instance=instance)

        fit = ac.ci.FitImagingCI(dataset=imaging_ci_7x7,
                                 post_cti_data=post_cti_data)

        assert fit.image.shape == (7, 7)
        assert fit_full_analysis.log_likelihood == pytest.approx(
            fit.log_likelihood)