Ejemplo n.º 1
0
    def to_conv_deeper_model(self, target_id, kernel_size):
        """Insert a relu-conv-bn block after the target block.

        Args:
            target_id: A convolutional layer ID. The new block should be inserted after the block.
            kernel_size: An integer. The kernel size of the new convolutional layer.
        """
        self.operation_history.append(('to_conv_deeper_model', target_id, kernel_size))
        target = self.layer_list[target_id]
        new_layers = deeper_conv_block(target, kernel_size, self.weighted)
        output_id = self._conv_block_end_node(target_id)

        self._insert_new_layers(new_layers, output_id)
Ejemplo n.º 2
0
    def to_conv_deeper_model(self, target_id, kernel_size):
        """Insert a relu-conv-bn block after the target block.

        Args:
            target_id: A convolutional layer ID. The new block should be inserted after the block.
            kernel_size: An integer. The kernel size of the new convolutional layer.
        """
        self.operation_history.append(('to_conv_deeper_model', target_id, kernel_size))
        target = self.layer_list[target_id]
        new_layers = deeper_conv_block(target, kernel_size, self.weighted)
        output_id = self._conv_block_end_node(target_id)

        self._insert_new_layers(new_layers, output_id)
Ejemplo n.º 3
0
    def to_conv_deeper_model(self, target_id, kernel_size):
        """Insert a convolution, batch-normalization, relu block after the target block.

        Args:
            target_id: A convolutional layer ID. The new block should be inserted after the relu layer
                in its conv-batch-relu block.
            kernel_size: An integer. The kernel size of the new convolutional layer.

        Returns:
            A new Keras model with the inserted block.
        """
        self.operation_history.append(
            ('to_conv_deeper_model', target_id, kernel_size))
        target = self.layer_list[target_id]
        new_layers = deeper_conv_block(target, kernel_size, self.weighted)
        output_id = self._conv_block_end_node(target_id)

        self._insert_new_layers(new_layers, output_id)
Ejemplo n.º 4
0
 def _deeper_conv_block(self, target, kernel_size):
     return deeper_conv_block(target, kernel_size)