Ejemplo n.º 1
0
def test_cast_to_int32_return_int32():
    dataset = test_utils.generate_one_hot_labels(100, 10, "dataset")
    dataset = dataset.map(lambda x: tf.cast(x, tf.uint8))
    dataset = common.CastToInt32().transform(dataset)
    for data in dataset:
        assert data.dtype == tf.int32
        break
Ejemplo n.º 2
0
def test_infer_ten_classes():
    analyser = output_analysers.ClassificationAnalyser(name="a")
    dataset = test_utils.generate_one_hot_labels(dtype="dataset", num_classes=10)

    for data in dataset:
        analyser.update(data)
    analyser.finalize()

    assert analyser.num_classes == 10
Ejemplo n.º 3
0
def test_img_clf_fit_call_auto_model_fit(fit, tmp_path):
    auto_model = ak.ImageClassifier(directory=tmp_path, seed=test_utils.SEED)

    auto_model.fit(
        x=test_utils.generate_data(num_instances=100, shape=(32, 32, 3)),
        y=test_utils.generate_one_hot_labels(num_instances=100, num_classes=10),
    )

    assert fit.is_called
Ejemplo n.º 4
0
def test_clf_head_transform_df_to_dataset():
    adapter = output_adapters.ClassificationAdapter(name="a")

    y = adapter.adapt(
        pd.DataFrame(
            test_utils.generate_one_hot_labels(dtype="np", num_classes=10)),
        batch_size=32,
    )

    assert isinstance(y, tf.data.Dataset)
Ejemplo n.º 5
0
def test_structured_clf_fit_call_auto_model_fit(fit, tmp_path):
    auto_model = ak.StructuredDataClassifier(directory=tmp_path,
                                             seed=test_utils.SEED)

    auto_model.fit(
        x=pd.read_csv(test_utils.TRAIN_CSV_PATH).to_numpy().astype(
            np.unicode)[:100],
        y=test_utils.generate_one_hot_labels(num_instances=100, num_classes=3),
    )

    assert fit.is_called
Ejemplo n.º 6
0
def test_clf_head_one_hot_shape_error():
    analyser = output_analysers.ClassificationAnalyser(name="a", num_classes=9)
    dataset = tf.data.Dataset.from_tensor_slices(
        test_utils.generate_one_hot_labels(dtype="np", num_classes=10)
    ).batch(32)

    with pytest.raises(ValueError) as info:
        for data in dataset:
            analyser.update(data)
        analyser.finalize()

    assert "Expect the target data for a to have shape" in str(info.value)
Ejemplo n.º 7
0
def test_image_classifier(tmp_path):
    train_x = test_utils.generate_data(num_instances=320, shape=(32, 32))
    train_y = test_utils.generate_one_hot_labels(num_instances=320,
                                                 num_classes=10)
    clf = ak.ImageClassifier(
        directory=tmp_path,
        max_trials=2,
        seed=test_utils.SEED,
        distribution_strategy=tf.distribute.MirroredStrategy(),
    )
    clf.fit(train_x, train_y, epochs=1, validation_split=0.2)
    keras_model = clf.export_model()
    clf.evaluate(train_x, train_y)
    assert clf.predict(train_x).shape == (len(train_x), 10)
    assert isinstance(keras_model, tf.keras.Model)
Ejemplo n.º 8
0
def test_structured_data_classifier(tmp_path):
    num_data = 500
    num_train = 400
    data = (pd.read_csv(test_utils.TRAIN_CSV_PATH).to_numpy().astype(
        np.unicode)[:num_data])
    x_train, x_test = data[:num_train], data[num_train:]
    y = test_utils.generate_one_hot_labels(num_instances=num_data,
                                           num_classes=3)
    y_train, y_test = y[:num_train], y[num_train:]
    clf = ak.StructuredDataClassifier(directory=tmp_path,
                                      max_trials=1,
                                      seed=test_utils.SEED)
    clf.fit(x_train, y_train, epochs=2, validation_data=(x_train, y_train))
    clf.export_model()
    assert clf.predict(x_test).shape == (len(y_test), 3)
Ejemplo n.º 9
0
def test_clf_head_hpps_with_uint8_contain_cast_to_int32():
    dataset = test_utils.generate_one_hot_labels(100, 10, "dataset")
    dataset = dataset.map(lambda x: tf.cast(x, tf.uint8))
    head = head_module.ClassificationHead(shape=(8, ))
    analyser = head.get_analyser()
    for data in dataset:
        analyser.update(data)
    analyser.finalize()
    head.config_from_analyser(analyser)

    assert any([
        isinstance(hpp, hyper_preprocessors.DefaultHyperPreprocessor)
        and isinstance(hpp.preprocessor, preprocessors.CastToInt32)
        for hpp in head.get_hyper_preprocessors()
    ])
Ejemplo n.º 10
0
def test_text_and_structured_data(tmp_path):
    # Prepare the data.
    num_instances = 80
    x_text = test_utils.generate_text_data(num_instances)
    x_structured_data = pd.read_csv(test_utils.TRAIN_CSV_PATH)

    x_structured_data = x_structured_data[:num_instances]
    y_classification = test_utils.generate_one_hot_labels(
        num_instances=num_instances, num_classes=3)
    y_regression = test_utils.generate_data(num_instances=num_instances,
                                            shape=(1, ))

    # Build model and train.
    structured_data_input = ak.StructuredDataInput()
    structured_data_output = ak.CategoricalToNumerical()(structured_data_input)
    structured_data_output = ak.DenseBlock()(structured_data_output)

    text_input = ak.TextInput()
    outputs1 = ak.TextToIntSequence()(text_input)
    outputs1 = ak.Embedding()(outputs1)
    outputs1 = ak.ConvBlock(separable=True)(outputs1)
    outputs1 = ak.SpatialReduction()(outputs1)
    outputs2 = ak.TextToNgramVector()(text_input)
    outputs2 = ak.DenseBlock()(outputs2)
    text_output = ak.Merge()((outputs1, outputs2))

    merged_outputs = ak.Merge()((structured_data_output, text_output))

    regression_outputs = ak.RegressionHead()(merged_outputs)
    classification_outputs = ak.ClassificationHead()(merged_outputs)
    automodel = ak.AutoModel(
        inputs=[text_input, structured_data_input],
        directory=tmp_path,
        outputs=[regression_outputs, classification_outputs],
        max_trials=2,
        tuner=ak.Hyperband,
        seed=test_utils.SEED,
    )

    automodel.fit(
        (x_text, x_structured_data),
        (y_regression, y_classification),
        validation_split=0.2,
        epochs=1,
    )