Ejemplo n.º 1
0
 def _distance_norm(dih):
     xyz3 = vec.from_internals(dist=dist,
                               xyz1=xyz1,
                               ang=ang,
                               xyz2=xyz2,
                               dih=dih,
                               xyz3=xyz0)
     dist_norm = numpy.linalg.norm(against_xyzs - numpy.array(xyz3))
     return dist_norm
Ejemplo n.º 2
0
 def _distance_norm(dih):  # objective function for minimization
     xyz3 = vec.from_internals(dist=r23,
                               xyz1=xyz2,
                               ang=a123,
                               xyz2=xyz1,
                               dih=dih,
                               xyz3=xyz0)
     dist_norm = numpy.linalg.norm(numpy.subtract(xyzs1, xyz3))
     # return the negative norm so that minimum value gives maximum distance
     return -dist_norm
Ejemplo n.º 3
0
def join(geo1,
         geo2,
         key2,
         key3,
         r23,
         a123=85.,
         a234=85.,
         d1234=85.,
         key1=None,
         key4=None,
         angstrom=True,
         degree=True):
    """ join two geometries based on four of their atoms, two on the first
    and two on the second

    Variables set the coordinates for 1-2...3-4 where 1-2 are bonded atoms in
    geo1 and 3-4 are bonded atoms in geo2.
    """
    key3 = key3 - count(geo1)
    a123 *= phycon.DEG2RAD if degree else 1
    a234 *= phycon.DEG2RAD if degree else 1
    d1234 *= phycon.DEG2RAD if degree else 1

    gra1, gra2 = map(connectivity_graph, (geo1, geo2))
    key1 = (automol.graph.atom_neighbor_atom_key(gra1, key2)
            if key1 is None else key1)
    key4 = (automol.graph.atom_neighbor_atom_key(gra2, key3)
            if key4 is None else key4)

    syms1 = symbols(geo1)
    syms2 = symbols(geo2)
    xyzs1 = coordinates(geo1, angstrom=angstrom)
    xyzs2 = coordinates(geo2, angstrom=angstrom)

    xyz1 = xyzs1[key1]
    xyz2 = xyzs1[key2]
    orig_xyz3 = xyzs2[key3]
    if key4 is not None:
        orig_xyz4 = xyzs2[key4]
    else:
        orig_xyz4 = [1., 1., 1.]

    r34 = vec.distance(orig_xyz3, orig_xyz4)

    # Place xyz3 as far away from the atoms in geo1 as possible by optimizing
    # the undetermined dihedral angle
    xyz0 = vec.arbitrary_unit_perpendicular(xyz2, orig_xyz=xyz1)

    def _distance_norm(dih):  # objective function for minimization
        dih, = dih
        xyz3 = vec.from_internals(dist=r23,
                                  xyz1=xyz2,
                                  ang=a123,
                                  xyz2=xyz1,
                                  dih=dih,
                                  xyz3=xyz0)
        dist_norm = numpy.linalg.norm(numpy.subtract(xyzs1, xyz3))
        # return the negative norm so that minimum value gives maximum distance
        return -dist_norm

    res = scipy.optimize.basinhopping(_distance_norm, 0.)
    dih = res.x[0]

    # Now, get the next position with the optimized dihedral angle
    xyz3 = vec.from_internals(dist=r23,
                              xyz1=xyz2,
                              ang=a123,
                              xyz2=xyz1,
                              dih=dih,
                              xyz3=xyz0)

    # Don't use the dihedral angle if 1-2-3 are linear
    if numpy.abs(a123 * phycon.RAD2DEG - 180.) > 5.:
        xyz4 = vec.from_internals(dist=r34,
                                  xyz1=xyz3,
                                  ang=a234,
                                  xyz2=xyz2,
                                  dih=d1234,
                                  xyz3=xyz1)
    else:
        xyz4 = vec.from_internals(dist=r34, xyz1=xyz3, ang=a234, xyz2=xyz2)

    align_ = vec.aligner(orig_xyz3, orig_xyz4, xyz3, xyz4)
    xyzs2 = tuple(map(align_, xyzs2))

    syms = syms1 + syms2
    xyzs = xyzs1 + xyzs2

    geo = from_data(syms, xyzs, angstrom=angstrom)
    return geo
Ejemplo n.º 4
0
def join(geo1,
         geo2,
         key2,
         key3,
         r23,
         a123=85.,
         a234=85.,
         d1234=85.,
         key1=None,
         key4=None,
         angstrom=True,
         degree=True):
    """ join two geometries based on four of their atoms, two on the first
    and two on the second

    Variables set the coordinates for 1-2...3-4 where 1-2 are bonded atoms in
    geo1 and 3-4 are bonded atoms in geo2.
    """
    key3 = key3 - count(geo1)
    a123 *= phycon.DEG2RAD if degree else 1
    a234 *= phycon.DEG2RAD if degree else 1
    d1234 *= phycon.DEG2RAD if degree else 1

    gra1, gra2 = map(connectivity_graph, (geo1, geo2))
    key1 = (automol.graph.atom_neighbor_atom_key(gra1, key2)
            if key1 is None else key1)
    key4 = (automol.graph.atom_neighbor_atom_key(gra2, key3)
            if key4 is None else key4)

    syms1 = symbols(geo1)
    syms2 = symbols(geo2)
    xyzs1 = coordinates(geo1, angstrom=angstrom)
    xyzs2 = coordinates(geo2, angstrom=angstrom)

    xyz1 = xyzs1[key1] if key1 is not None else None
    xyz2 = xyzs1[key2]
    orig_xyz3 = xyzs2[key3]
    orig_xyz4 = xyzs2[key4] if key4 is not None else [1., 1., 1.]

    if key1 is None:
        # If the first fragment is monatomic, we can place the other one
        # anywhere we want (direction doesn't matter)
        xyz3 = numpy.add(xyz2, [0., 0., r23])
    else:
        # If the first fragment isn't monatomic, we need to take some care in
        # where we place the second one.
        # r23 and a123 are fixed, so the only degree of freedom we have to do
        # this is to optimize a dihedral angle relative to an arbitrary point
        # xyz0.
        # This dihedral angle is optimized to maximize the distance of xyz3
        # from all of the atoms in fragment 1 (xyzs1).
        xyz1 = xyzs1[key1]

        # Place xyz3 as far away from the atoms in geo1 as possible by
        # optimizing the undetermined dihedral angle
        xyz0 = vec.arbitrary_unit_perpendicular(xyz2, orig_xyz=xyz1)

        def _distance_norm(dih):  # objective function for minimization
            dih, = dih
            xyz3 = vec.from_internals(dist=r23,
                                      xyz1=xyz2,
                                      ang=a123,
                                      xyz2=xyz1,
                                      dih=dih,
                                      xyz3=xyz0)
            dist_norm = numpy.linalg.norm(numpy.subtract(xyzs1, xyz3))
            # return the negative norm so that minimum value gives maximum
            # distance
            return -dist_norm

        res = scipy.optimize.basinhopping(_distance_norm, 0.)
        dih = res.x[0]

        # Now, get the next position with the optimized dihedral angle
        xyz3 = vec.from_internals(dist=r23,
                                  xyz1=xyz2,
                                  ang=a123,
                                  xyz2=xyz1,
                                  dih=dih,
                                  xyz3=xyz0)

    r34 = vec.distance(orig_xyz3, orig_xyz4)

    # If 2 doen't have neighbors or 1-2-3 are linear, ignore the dihedral angle
    if key1 is None or numpy.abs(a123 * phycon.RAD2DEG - 180.) < 5.:
        xyz4 = vec.from_internals(dist=r34, xyz1=xyz3, ang=a234, xyz2=xyz2)
    else:
        xyz4 = vec.from_internals(dist=r34,
                                  xyz1=xyz3,
                                  ang=a234,
                                  xyz2=xyz2,
                                  dih=d1234,
                                  xyz3=xyz1)

    align_ = vec.aligner(orig_xyz3, orig_xyz4, xyz3, xyz4)
    xyzs2 = tuple(map(align_, xyzs2))

    syms = syms1 + syms2
    xyzs = xyzs1 + xyzs2

    geo = from_data(syms, xyzs, angstrom=angstrom)
    return geo