Ejemplo n.º 1
0
def test_epi_model__with_death_rate__expect_pop_decrease(ModelClass):
    """
    Ensure that a model with two compartments and only death rate dynamics results in fewer people.
    """
    # Set up a model with 100 people, all susceptible, no transmission possible.
    # Add some dying at ~2 people / 100 / year.
    pop = 100
    model = ModelClass(
        times=get_integration_times(2000, 2005, 1),
        compartment_types=[Compartment.SUSCEPTIBLE, Compartment.EARLY_INFECTIOUS],
        initial_conditions={Compartment.SUSCEPTIBLE: pop},
        parameters={"universal_death_rate": 2e-2},
        requested_flows=[],
        birth_approach=BirthApproach.NO_BIRTH,
        starting_population=pop,
    )
    # Run the model for 5 years.
    model.run_model(integration_type=IntegrationType.ODE_INT)
    # Expect that we have more people in the population
    expected_output = [
        [100.0, 0.0],
        [98.0, 0.0],
        [96.0, 0.0],
        [94.0, 0.0],
        [92.0, 0.0],
        [91.0, 0.0],
    ]
    actual_output = np.round(model.outputs)
    assert (actual_output == np.array(expected_output)).all()
Ejemplo n.º 2
0
def test_epi_model__with_infection_density__expect_all_infected(ModelClass):
    """
    Ensure that a model with two compartments and one-way internal dynamics results in all infected.
    """
    # Set up a model with 100 people, all susceptible execept 1 infected.
    pop = 100
    model = ModelClass(
        times=get_integration_times(2000, 2005, 1),
        compartment_types=[Compartment.SUSCEPTIBLE, Compartment.EARLY_INFECTIOUS],
        initial_conditions={Compartment.EARLY_INFECTIOUS: 1},
        parameters={"contact_rate": 0.03},
        requested_flows=[
            {
                "type": Flow.INFECTION_DENSITY,
                "parameter": "contact_rate",
                "origin": Compartment.SUSCEPTIBLE,
                "to": Compartment.EARLY_INFECTIOUS,
            }
        ],
        starting_population=pop,
    )
    # Run the model for 5 years.
    model.run_model(integration_type=IntegrationType.ODE_INT)
    # Expect that everyone gets infected eventually.
    expected_output = [
        [[99.0, 1.0], [83.0, 17.0], [20.0, 80.0], [1.0, 99.0], [0.0, 100.0], [0.0, 100.0],]
    ]
    actual_output = np.round(model.outputs)
    assert (actual_output == np.array(expected_output)).all()
Ejemplo n.º 3
0
def test_strat_model__with_locations__expect_no_change():
    """
    Ensure that a module with location stratification populates locations correctly.
    """
    pop = 1000
    model = StratifiedModel(
        times=get_integration_times(2000, 2005, 1),
        compartment_types=[Compartment.SUSCEPTIBLE, Compartment.EARLY_INFECTIOUS],
        initial_conditions={Compartment.SUSCEPTIBLE: pop},
        parameters={},
        requested_flows=[],
        starting_population=pop,
    )
    # Add basic location stratification
    model.stratify(
        Stratification.LOCATION,
        strata_request=["rural", "urban", "prison"],
        compartment_types_to_stratify=[],
        requested_proportions={"rural": 0.44, "urban": 0.55, "prison": 0.01},
    )
    # Run the model for 5 years.
    model.run_model(integration_type=IntegrationType.ODE_INT)

    # Expect everyone to start in their locations, then nothing should change,
    expected_output = [
        [440.0, 550.0, 10.0, 0.0, 0.0, 0.0],
        [440.0, 550.0, 10.0, 0.0, 0.0, 0.0],
        [440.0, 550.0, 10.0, 0.0, 0.0, 0.0],
        [440.0, 550.0, 10.0, 0.0, 0.0, 0.0],
        [440.0, 550.0, 10.0, 0.0, 0.0, 0.0],
        [440.0, 550.0, 10.0, 0.0, 0.0, 0.0],
    ]
    actual_output = np.round(model.outputs)
    assert (actual_output == np.array(expected_output)).all()
Ejemplo n.º 4
0
def test_epi_model__with_no_infected__expect_no_change(ModelClass):
    """
    Ensure that if no one has the disease, then no one gets the disease in the future.
    """
    # Set up a model with 100 people, all susceptible, transmission highly likely, but no one is infected.
    pop = 100
    model = ModelClass(
        times=get_integration_times(2000, 2005, 1),
        compartment_types=[Compartment.SUSCEPTIBLE, Compartment.EARLY_INFECTIOUS],
        initial_conditions={Compartment.SUSCEPTIBLE: pop},
        parameters={"contact_rate": 10},
        requested_flows=[
            {
                "type": Flow.INFECTION_FREQUENCY,
                "parameter": "contact_rate",
                "origin": Compartment.SUSCEPTIBLE,
                "to": Compartment.EARLY_INFECTIOUS,
            }
        ],
        starting_population=pop,
    )
    # Run the model for 5 years.
    model.run_model(integration_type=IntegrationType.ODE_INT)
    # Expect that no one has moved from sucsceptible to infections at any point in time
    expected_output = [
        [100.0, 0.0],
        [100.0, 0.0],
        [100.0, 0.0],
        [100.0, 0.0],
        [100.0, 0.0],
        [100.0, 0.0],
    ]
    actual_output = np.round(model.outputs)
    assert (actual_output == np.array(expected_output)).all()
Ejemplo n.º 5
0
def test_epi_model__with_static_dynamics__expect_no_change(ModelClass):
    """
    Ensure that a model with two compartments and no internal dynamics results in no change.
    """
    # Set up a model with 100 people, all susceptible, no transmission possible.
    pop = 100
    model = ModelClass(
        times=get_integration_times(2000, 2005, 1),
        compartment_types=[Compartment.SUSCEPTIBLE, Compartment.EARLY_INFECTIOUS],
        initial_conditions={Compartment.SUSCEPTIBLE: pop},
        parameters={},
        requested_flows=[],
        starting_population=pop,
    )
    # Run the model for 5 years.
    model.run_model(integration_type=IntegrationType.ODE_INT)
    # Expect that no one has moved from sucsceptible to infections at any point in time
    expected_output = [
        [100.0, 0.0],
        [100.0, 0.0],
        [100.0, 0.0],
        [100.0, 0.0],
        [100.0, 0.0],
        [100.0, 0.0],
    ]
    actual_output = np.round(model.outputs)
    assert (actual_output == np.array(expected_output)).all()
Ejemplo n.º 6
0
def test_strat_model__with_age__expect_ageing():
    """
    Ensure that a module with age stratification produces ageing flows,
    and the correct output.
    """
    pop = 1000
    model = StratifiedModel(
        times=get_integration_times(2000, 2005, 1),
        compartment_types=[Compartment.SUSCEPTIBLE, Compartment.EARLY_INFECTIOUS],
        initial_conditions={Compartment.SUSCEPTIBLE: pop},
        parameters={},
        requested_flows=[],
        starting_population=pop,
    )
    # Add basic age stratification
    model.stratify(
        Stratification.AGE,
        strata_request=[0, 5, 15, 60],
        compartment_types_to_stratify=[],
        requested_proportions={},
    )
    # Run the model for 5 years.
    model.run_model(integration_type=IntegrationType.ODE_INT)

    # Expect everyone to generally get older, but no one should die or get sick
    expected_output = [
        [250.0, 250.0, 250.0, 250.0, 0.0, 0.0, 0.0, 0.0],
        [205.0, 269.0, 270.0, 256.0, 0.0, 0.0, 0.0, 0.0],
        [168.0, 279.0, 291.0, 262.0, 0.0, 0.0, 0.0, 0.0],
        [137.0, 281.0, 313.0, 269.0, 0.0, 0.0, 0.0, 0.0],
        [112.0, 278.0, 334.0, 276.0, 0.0, 0.0, 0.0, 0.0],
        [92.0, 271.0, 354.0, 284.0, 0.0, 0.0, 0.0, 0.0],
    ]
    actual_output = np.round(model.outputs)
    assert (actual_output == np.array(expected_output)).all()
Ejemplo n.º 7
0
def _build_model(*args, **kwargs):
    pop = 1000
    model = StratifiedModel(
        times=get_integration_times(2000, 2005, 1),
        compartment_types=[Compartment.SUSCEPTIBLE, Compartment.INFECTIOUS],
        initial_conditions={Compartment.SUSCEPTIBLE: pop},
        parameters={},
        requested_flows=[],
        starting_population=pop,
    )
    # Add basic age stratification
    model.stratify(
        Stratification.AGE,
        strata_request=[0, 5, 15, 60],
        compartment_types_to_stratify=[],
        requested_proportions={},
    )
    return model
Ejemplo n.º 8
0
def test_epi_model__with_recovery_rate__expect_all_recover(ModelClass):
    """
    Ensure that a model with three compartments and only recovery dynamics
    results in (almost) everybody recovering.
    """
    # Set up a model with 100 people, all infectious.
    # Add recovery dynamics.
    pop = 100
    model = ModelClass(
        times=get_integration_times(2000, 2005, 1),
        compartment_types=[
            Compartment.SUSCEPTIBLE,
            Compartment.EARLY_INFECTIOUS,
            Compartment.RECOVERED,
        ],
        initial_conditions={Compartment.EARLY_INFECTIOUS: pop},
        parameters={"recovery": 1},
        requested_flows=[
            {
                "type": Flow.STANDARD,
                "parameter": "recovery",
                "origin": Compartment.EARLY_INFECTIOUS,
                "to": Compartment.RECOVERED,
            }
        ],
        birth_approach=BirthApproach.NO_BIRTH,
        starting_population=pop,
    )
    # Run the model for 5 years.
    model.run_model(integration_type=IntegrationType.ODE_INT)
    # Expect that almost everyone recovers
    expected_output = [
        [0.0, 100.0, 0.0],
        [0.0, 37.0, 63.0],
        [0.0, 14.0, 86.0],
        [0.0, 5.0, 95.0],
        [0.0, 2.0, 98.0],
        [0.0, 1.0, 99.0],
    ]
    actual_output = np.round(model.outputs)
    assert (actual_output == np.array(expected_output)).all()
Ejemplo n.º 9
0
def test_epi_model__with_infect_death_rate__expect_infected_pop_decrease(ModelClass):
    """
    Ensure that a model with two compartments and only infected death rate dynamics
    results in fewer infected people, but no change to susceptible pop.
    """
    # Set up a model with 100 people, all susceptible, no transmission possible.
    # Add some dying at ~2 people / 100 / year.
    pop = 100
    model = ModelClass(
        times=get_integration_times(2000, 2005, 1),
        compartment_types=[Compartment.SUSCEPTIBLE, Compartment.EARLY_INFECTIOUS],
        initial_conditions={Compartment.EARLY_INFECTIOUS: 50},
        parameters={"infect_death": 2e-2},
        requested_flows=[
            {
                "type": Flow.COMPARTMENT_DEATH,
                "parameter": "infect_death",
                "origin": Compartment.EARLY_INFECTIOUS,
            }
        ],
        birth_approach=BirthApproach.NO_BIRTH,
        starting_population=pop,
    )
    # Run the model for 5 years.
    model.run_model(integration_type=IntegrationType.ODE_INT)
    # Expect that we have more people in the population
    expected_output = [
        [50.0, 50.0],
        [50.0, 49.0],
        [50.0, 48.0],
        [50.0, 47.0],
        [50.0, 46.0],
        [50.0, 45.0],
    ]
    actual_output = np.round(model.outputs)
    assert (actual_output == np.array(expected_output)).all()
Ejemplo n.º 10
0
def test_strat_model__with_age_and_starting_proportion__expect_ageing():
    """
    Ensure that a module with age stratification and starting proporptions
    produces ageing flows, and the correct output.
    """
    pop = 1000
    model = StratifiedModel(
        times=get_integration_times(2000, 2005, 1),
        compartment_types=[Compartment.SUSCEPTIBLE, Compartment.EARLY_INFECTIOUS],
        initial_conditions={Compartment.SUSCEPTIBLE: pop},
        parameters={},
        requested_flows=[],
        starting_population=pop,
    )
    # Add basic age stratification
    model.stratify(
        Stratification.AGE,
        strata_request=[0, 5, 15, 60],
        compartment_types_to_stratify=[],
        requested_proportions={"0": 0.8, "5": 0.1, "15": 0.1},
    )
    # Run the model for 5 years.
    model.run_model(integration_type=IntegrationType.ODE_INT)

    # Expect everyone to generally get older, but no one should die or get sick.
    # Expect initial distribution of ages to be set according to "requested_proportions".
    expected_output = [
        [800.0, 100.0, 100.0, 0.0, 0.0, 0.0, 0.0, 0.0],
        [655.0, 228.0, 114.0, 2.0, 0.0, 0.0, 0.0, 0.0],
        [536.0, 319.0, 139.0, 5.0, 0.0, 0.0, 0.0, 0.0],
        [439.0, 381.0, 171.0, 9.0, 0.0, 0.0, 0.0, 0.0],
        [360.0, 421.0, 207.0, 13.0, 0.0, 0.0, 0.0, 0.0],
        [294.0, 442.0, 245.0, 18.0, 0.0, 0.0, 0.0, 0.0],
    ]
    actual_output = np.round(model.outputs)
    assert (actual_output == np.array(expected_output)).all()
Ejemplo n.º 11
0
def test_strat_model__with_age_and_infectiousness__expect_age_based_infectiousness():
    """
    Ensure that a module with age stratification produces ageing flows,
    and the correct output. Ensure that age-speific mortality is used.
    """
    pop = 1000
    model = StratifiedModel(
        times=get_integration_times(2000, 2005, 1),
        compartment_types=[Compartment.SUSCEPTIBLE, Compartment.EARLY_INFECTIOUS],
        initial_conditions={Compartment.SUSCEPTIBLE: pop},
        parameters={"contact_rate": None},
        requested_flows=[
            {
                "type": Flow.INFECTION_FREQUENCY,
                "parameter": "contact_rate",
                "origin": Compartment.SUSCEPTIBLE,
                "to": Compartment.EARLY_INFECTIOUS,
            }
        ],
        starting_population=pop,
    )
    # Add age stratification
    model.stratify(
        Stratification.AGE,
        strata_request=[0, 5, 15, 60],
        compartment_types_to_stratify=[],
        requested_proportions={},
        adjustment_requests={"contact_rate": {"0": 0.0, "5": 3.0, "15": 0.0, "60": 0.0}},
    )
    # Run the model for 5 years.
    model.run_model(integration_type=IntegrationType.ODE_INT)

    # Expect everyone to generally get older, but no one should die or get sick
    expected_output = []
    actual_output = np.round(model.outputs)
    assert (actual_output == np.array(expected_output)).all()
Ejemplo n.º 12
0
def test_epi_model__with_complex_dynamics__expect_correct_outputs(ModelClass):
    """
    Ensure that a EpiModel with the "full suite" of TB dynamics produces correct results:
        - 5 compartments
        - birth rate +  universal death rate
        - standard inter-compartment flows

    FIXME: Change parameter values to be vaugely realistic
    """
    # Set up a model with 1000 people, 100 intially infected
    pop = 1000
    times = get_integration_times(2000, 2005, 1)
    compartments = [
        Compartment.SUSCEPTIBLE,
        Compartment.EARLY_INFECTIOUS,
        Compartment.LATE_LATENT,
        Compartment.EARLY_LATENT,
        Compartment.RECOVERED,
    ]
    initial_pop = {Compartment.EARLY_INFECTIOUS: 100}
    params = {
        # Global birth / death params
        "crude_birth_rate": 2e-2,  # ~ 2 babies / 100 / year
        "universal_death_rate": 2e-2,  # ~ 2 deaths / 100 / year
        # Compartment flow params
        "infect_death": 0.4,
        "recovery": 0.2,
        "contact_rate": 14,
        "contact_rate_recovered": 14,
        "contact_rate_late_latent": 3,
        "stabilisation": 3,
        "early_progression": 2,
        "late_progression": 1,
        "case_detection": 1,
    }
    flows = [
        # Susceptible becoming latent
        {
            "type": Flow.INFECTION_FREQUENCY,
            "parameter": "contact_rate",
            "origin": Compartment.SUSCEPTIBLE,
            "to": Compartment.EARLY_LATENT,
        },
        # Recovered becoming latent again.
        {
            "type": Flow.INFECTION_FREQUENCY,
            "parameter": "contact_rate_recovered",
            "origin": Compartment.RECOVERED,
            "to": Compartment.EARLY_LATENT,
        },
        # Late latent going back to early latent
        {
            "type": Flow.INFECTION_FREQUENCY,
            "parameter": "contact_rate_late_latent",
            "origin": Compartment.LATE_LATENT,
            "to": Compartment.EARLY_LATENT,
        },
        # Early progression from latent to infectious
        {
            "type": Flow.STANDARD,
            "parameter": "early_progression",
            "origin": Compartment.EARLY_LATENT,
            "to": Compartment.EARLY_INFECTIOUS,
        },
        # Transition from early to late latent
        {
            "type": Flow.STANDARD,
            "parameter": "stabilisation",
            "origin": Compartment.EARLY_LATENT,
            "to": Compartment.LATE_LATENT,
        },
        # Late latent becoming infectious.
        {
            "type": Flow.STANDARD,
            "parameter": "late_progression",
            "origin": Compartment.LATE_LATENT,
            "to": Compartment.EARLY_INFECTIOUS,
        },
        # Infected people dying.
        {
            "type": Flow.COMPARTMENT_DEATH,
            "parameter": "infect_death",
            "origin": Compartment.EARLY_INFECTIOUS,
        },
        # Infected people recovering naturally.
        {
            "type": Flow.STANDARD,
            "parameter": "recovery",
            "origin": Compartment.EARLY_INFECTIOUS,
            "to": Compartment.RECOVERED,
        },
        # Infectious people recovering via manual intervention
        {
            "type": Flow.STANDARD,
            "parameter": "case_detection",
            "origin": Compartment.EARLY_INFECTIOUS,
            "to": Compartment.RECOVERED,
        },
    ]
    model = ModelClass(
        times,
        compartments,
        initial_pop,
        params,
        flows,
        birth_approach=BirthApproach.ADD_CRUDE,
        starting_population=pop,
    )
    # Run the model for 5 years.
    model.run_model(integration_type=IntegrationType.ODE_INT)
    # Expect that the results are consistent, nothing crazy happens.
    expected_output = [
        [900.0, 100.0, 0.0, 0.0, 0.0],
        [66.0, 307.0, 274.0, 204.0, 75.0],
        [3.0, 345.0, 221.0, 151.0, 69.0],
        [2.0, 297.0, 176.0, 127.0, 58.0],
        [2.0, 249.0, 146.0, 106.0, 48.0],
        [1.0, 208.0, 121.0, 89.0, 40.0],
    ]
    actual_output = np.round(model.outputs)
    assert (actual_output == np.array(expected_output)).all()