Ejemplo n.º 1
0
def plotPath(resAB, name, flags):
    """ Plot and save results depending on flags options"""
    splitPoint = resAB['splitPoint']
    header = resAB['dem']['header']
    rasterdata = resAB['dem']['rasterData']
    x = resAB[name]['x']
    y = resAB[name]['y']
    indSplit = resAB[name]['indSplit']

    if flags.getboolean('plotPath'):
        # Plot raster and path
        fig, ax = plt.subplots(figsize=(pU.figW, pU.figH))
        titleText = name
        plt.title(titleText)
        cmap = copy.copy(mpl.cm.get_cmap("Greys"))
        cmap.set_bad(color='white')
        im = plt.imshow(rasterdata, cmap, origin='lower')
        divider = make_axes_locatable(ax)
        cax = divider.append_axes("right", size="5%", pad=0.1)
        fig.colorbar(im, cax=cax)
        # path1 = ax1.plot((x-header.xllcorner)/header.cellsize,
        #                  (y-header.yllcorner)/header.cellsize)
        ax.plot((x - header.xllcorner) / header.cellsize,
                (y - header.yllcorner) / header.cellsize,
                'k',
                label='avapath')
        ax.plot((splitPoint['x'] - header.xllcorner) / header.cellsize,
                (splitPoint['y'] - header.yllcorner) / header.cellsize,
                '.',
                color='0.3',
                label='Split points')
        ax.plot((x[indSplit] - header.xllcorner) / header.cellsize,
                (y[indSplit] - header.yllcorner) / header.cellsize,
                '.',
                color='0.6',
                label='Projection of Split Point on ava path')
        fig.legend(frameon=False, loc='lower center')
        pU.putAvaNameOnPlot(ax, name)
        plt.show(block=False)
Ejemplo n.º 2
0
def resultVisu(cfgSetup, cfgPath, cfgFlags, rasterTransfo, resAnalysis):
    """
    Visualize results in a nice way
    """
    ####################################
    # Get input data
    resType = cfgSetup['resType']
    unit = pU.cfgPlotUtils['unit' + resType]
    name = pU.cfgPlotUtils['name' + resType]
    fnames = cfgPath[resType]
    maxMaxDPPR = resAnalysis['MM' + resType.upper()]

    thresholdValue = cfgSetup['thresholdValue']

    nRef = cfgPath['referenceFile']

    flag = float(cfgFlags['typeFlag'])

    zPath = rasterTransfo['z']
    sPath = rasterTransfo['s']

    indStartOfRunout = rasterTransfo['indStartOfRunout']
    sStart = sPath[indStartOfRunout]
    runout = resAnalysis['runout'][0]

    # prepare for plot
    if flag == 2:
        title = 'Visualizing EGU growth index data'
        tipo = 'growthInd'
        GI = resAnalysis['growthIndex']
        data = GI
        yaxis_label = 'growth index [GI]'

    elif flag == 3:
        title = 'Visualizing max ' + name + ' data'
        tipo = 'relMax' + resType + '_thresholdValue' + str(
            thresholdValue).replace('.', 'p')
        data = maxMaxDPPR / maxMaxDPPR[nRef]
        yaxis_label = 'relative max ' + name + ' [-]'

    else:
        log.error('Wrong flag')
        return None

    log.info(title)

    # If more than 100 files are provided, add a density plot
    plotDensity = 0
    if (len(fnames) > 100):
        plotDensity = 1

    color = pU.cmapAimec(np.linspace(1, 0, len(runout) + 3, dtype=float))
    mk = 0

    #######################################
    # Final result diagram - z_profile+data

    fig = plt.figure(figsize=(pU.figW * 2, pU.figH))

    # show flow path
    ax1 = fig.add_subplot(111)
    ax1.set_title(title)
    ax1.set_ylabel(yaxis_label, color=color[-3])
    ax1.spines['left'].set_color(color[-3])
    ax1.tick_params(axis='y', colors=color[-3])
    ax1.set_xlabel(''.join(
        ['s [m] - runout with ',
         str(thresholdValue), ' kPa threshold']))
    pU.putAvaNameOnPlot(ax1, cfgPath['projectName'])
    if plotDensity:  # estimate 2D histogram --> create pcolormesh
        nbins = 100
        H, xedges, yedges = np.histogram2d(runout, data, bins=nbins)
        H = np.flipud(np.rot90(H))
        Hmasked = np.ma.masked_where(H == 0, H)
        dataDensity = plt.pcolormesh(xedges, yedges, Hmasked, cmap=cm.Blues)
        cbar = plt.colorbar(dataDensity, orientation='horizontal')
        cbar.ax.set_ylabel('Counts')

    ax2 = ax1.twinx()
    ax2.set_ylabel('z [m]')
    ax2.spines['left'].set_color(color[-3])
    ax2.tick_params(axis='y', colors='k')
    ax2.plot(sPath, zPath, color='k', label='path', linestyle='--')
    plt.xlim([0, max(sPath) + 50])
    plt.ylim(
        [math.floor(min(zPath) / 10) * 10,
         math.ceil(max(zPath) / 10) * 10])

    if not plotDensity:
        for k in range(len(runout)):
            topoName = cfgPath['projectName']
            pfarbe = color[k + 1]
            if k == 0:
                ax1.plot(runout[k],
                         data[k],
                         marker='+',
                         linestyle='None',
                         markersize=2 * pU.ms,
                         color='g',
                         label='Reference')
            elif k == 1:
                ax1.plot(runout[k],
                         data[k],
                         marker=pU.markers,
                         label='sims',
                         color=pfarbe,
                         linestyle='None')
            else:
                ax1.plot(runout[k],
                         data[k],
                         marker=pU.markers,
                         color=pfarbe,
                         linestyle='None')
            mk = mk + 1
            if mk == len(pU.markers):
                mk = 1
        ax1.legend(loc=4)

    ax1.grid('on')

    outFileName = '_'.join([cfgPath['projectName'], tipo])

    pU.saveAndOrPlot(cfgPath, cfgFlags, outFileName, fig)

    ############################################
    # Final result diagram - roc-plots

    rTP = resAnalysis['TP'] / (resAnalysis['TP'][nRef] +
                               resAnalysis['FN'][nRef])
    rFP = resAnalysis['FP'] / (resAnalysis['TP'][nRef] +
                               resAnalysis['FN'][nRef])

    fig = plt.figure(figsize=(pU.figW, pU.figH))
    mk = 0
    ax1 = fig.add_subplot(111)
    ax1.set_title('Normalized difference compared to reference')
    ax1.set_ylabel('True positive rate')
    ax1.set_xlabel('False positive rate')
    pU.putAvaNameOnPlot(ax1, cfgPath['projectName'])
    if plotDensity:  # estimate 2D histogram --> create pcolormesh
        nbins = 100
        H, xedges, yedges = np.histogram2d(rFP, rTP, bins=nbins)
        H = np.flipud(np.rot90(H))
        Hmasked = np.ma.masked_where(H == 0, H)
        dataDensity = plt.pcolormesh(xedges, yedges, Hmasked, cmap=cm.cool)
        cbar = plt.colorbar(dataDensity, orientation='horizontal')
        cbar.ax.set_ylabel('hit rate density')
    else:
        for k in range(len(rTP)):
            pfarbe = color[k + 1]  # colorvar(float(k), len(rTP), colorflag)
            if k == 0:
                ax1.plot(rFP[k],
                         rTP[k],
                         color='g',
                         label='Reference',
                         marker='+',
                         markersize=2 * pU.ms,
                         linestyle='None')
            elif k == 1:
                ax1.plot(rFP[k],
                         rTP[k],
                         marker=pU.markers,
                         label='sims',
                         color=pfarbe,
                         linestyle='None')
            else:
                ax1.plot(rFP[k],
                         rTP[k],
                         marker=pU.markers,
                         color=pfarbe,
                         linestyle='None')
            mk = mk + 1
            if mk == len(pU.markers):
                mk = 0
        ax1.legend(loc=4)

    plt.xlim([-0.03, max(1, max(rFP) + 0.03)])
    plt.ylim([-0.03, 1.03])
    plt.grid('on')

    outFileName = '_'.join([
        cfgPath['projectName'], resType, 'thresholdValue',
        str(thresholdValue).replace('.', 'p'), 'ROC'
    ])

    pU.saveAndOrPlot(cfgPath, cfgFlags, outFileName, fig)

    return
Ejemplo n.º 3
0
def visuComparison(rasterTransfo, inputs, cfgPath, cfgFlags):
    """
    Plot and save the comparison between current simulation and Reference
    in the run-out area
    """
    ####################################
    # Get input data
    # read paths
    projectName = cfgPath['projectName']
    # read data
    s = rasterTransfo['s']
    l = rasterTransfo['l']
    indStartOfRunout = rasterTransfo['indStartOfRunout']
    sStart = s[indStartOfRunout]
    runoutLength = inputs['runoutLength']
    refData = inputs['refData']
    compData = inputs['compData']
    refRasterMask = inputs['refRasterMask']
    newRasterMask = inputs['newRasterMask']
    i = inputs['i']
    resType = inputs['resType']
    unit = pU.cfgPlotUtils['unit' + resType]
    name = pU.cfgPlotUtils['name' + resType]
    thresholdArray = inputs['thresholdArray']
    thresholdValue = thresholdArray[-1]
    contCmap = cfgPath['contCmap']

    ############################################
    # Figure: Raster comparison (mask for the pThreshold given in the ini file)
    fig = plt.figure(figsize=(pU.figW * 2, pU.figH))
    ax1 = plt.subplot2grid((1, 2), (0, 0))

    # get color map
    cmap, _, _, norm, ticks = makePalette.makeColorMap(pU.cmapPres,
                                                       thresholdValue,
                                                       np.nanmax((refData)),
                                                       continuous=contCmap)
    cmap.set_bad(color='w')
    refDataPlot = np.ma.masked_where(refData == 0.0, refData)
    ref0, im = pU.NonUnifIm(ax1,
                            l,
                            s,
                            refDataPlot,
                            'l [m]',
                            's [m]',
                            extent=[l.min(),
                                    l.max(),
                                    s.min(),
                                    s.max()],
                            cmap=cmap,
                            norm=norm)
    ax1.axhline(y=s[indStartOfRunout],
                color='k',
                linestyle='--',
                label='start of run-out area point : %.1f °' %
                rasterTransfo['startOfRunoutAreaAngle'])
    ax1.set_title('Reference %s in the RunOut area' % name + '\n' +
                  '%s threshold: %.1f %s' % (name, thresholdValue, unit))
    pU.addColorBar(im, ax1, ticks, unit)

    yLim = s[max(np.max(np.nonzero(np.any(refData != 0, axis=1))[0]),
                 np.max(np.nonzero(np.any(compData != 0, axis=1))[0]))]
    ax1.set_ylim([0, yLim])
    ax1.legend(loc='lower right')
    pU.putAvaNameOnPlot(ax1, projectName)

    ax2 = plt.subplot2grid((1, 2), (0, 1))
    colorsList = [[0, 0, 1], [1, 1, 1], [1, 0, 0]]
    cmap = matplotlib.colors.ListedColormap(colorsList)
    cmap.set_under(color='b')
    cmap.set_over(color='r')
    cmap.set_bad(alpha=0)
    data = newRasterMask - refRasterMask
    data = np.ma.masked_where(data == 0.0, data)
    ref1, im1 = pU.NonUnifIm(ax2,
                             l,
                             s,
                             data,
                             'l [m]',
                             's [m]',
                             extent=[l.min(),
                                     l.max(),
                                     s.min(),
                                     s.max()],
                             cmap=cmap)
    if cfgPath['compType'][0] == 'comModules':
        namePrint = 'refMod:' + cfgPath['compType'][
            1] + '_' + 'compMod:' + cfgPath['compType'][2]
        pU.putAvaNameOnPlot(ax2, namePrint)
    ax2.set_ylim([s[indStartOfRunout], yLim])
    ax2.set_title('Difference %s current - reference in runout area' %
                  resType + '\n' + 'Blue = FN, Red = FP')

    outFileName = '_'.join([
        projectName, 'thresholdValue',
        str(thresholdValue).replace('.', 'p'), 'sim',
        str(i), 'AreaComparisonToReference'
    ])
    pU.saveAndOrPlot(cfgPath, cfgFlags, outFileName, fig)

    ############################################
    # Figure: Raster comparison
    fig = plt.figure(figsize=(pU.figW * 3,
                              pU.figH * 2))  #, constrained_layout=True)
    ax1 = plt.subplot2grid((3, 3), (0, 0), rowspan=3)
    # get color map
    cmap, _, _, norm, ticks = makePalette.makeColorMap(pU.cmapPres,
                                                       thresholdValue,
                                                       np.nanmax((refData)),
                                                       continuous=pU.contCmap)
    cmap.set_bad(color='w')
    refDataPlot = np.ma.masked_where(refData == 0.0, refData)
    ref0, im = pU.NonUnifIm(ax1,
                            l,
                            s,
                            refDataPlot,
                            'l [m]',
                            's [m]',
                            extent=[l.min(), l.max(), 0, yLim],
                            cmap=cmap,
                            norm=norm)
    ax1.axhline(y=s[indStartOfRunout],
                color='k',
                linestyle='--',
                label='start of run-out area point : %.1f °' %
                rasterTransfo['startOfRunoutAreaAngle'])
    ax1.set_title('Reference %s' % name)
    pU.addColorBar(im, ax1, ticks, unit)
    ax1.set_ylim([0, yLim])
    ax1.legend(loc='lower right')
    pU.putAvaNameOnPlot(ax1, projectName)

    compData = compData[indStartOfRunout:, :]
    refData = refData[indStartOfRunout:, :]
    dataDiff = compData - refData
    dataDiff = np.where((refData == 0) & (compData == 0), np.nan, dataDiff)
    dataDiffPlot = dataDiff[np.isnan(dataDiff) == False]
    # only plot hist and CDF if there is a difference in the data
    if dataDiffPlot.size:
        indDiff = dataDiffPlot > 0
        if indDiff.any():
            ax2 = plt.subplot2grid((3, 3), (0, 1), rowspan=2, colspan=2)
        else:
            ax2 = plt.subplot2grid((3, 3), (0, 1), rowspan=3, colspan=3)

    cmap = pU.cmapdiv
    cmap.set_bad(color='w')
    elev_max = inputs['diffLim']
    ref0, im3 = pU.NonUnifIm(
        ax2,
        l,
        s[indStartOfRunout:], (dataDiff),
        'l [m]',
        's [m]',
        extent=[l.min(), l.max(), s[indStartOfRunout:].min(), yLim],
        cmap=cmap)
    im3.set_clim(vmin=-elev_max, vmax=elev_max)
    L, S = np.meshgrid(l, s[indStartOfRunout:])
    colorsP = pU.cmapPres['colors'][1:5]
    contourRef = ax2.contour(L,
                             S,
                             refData,
                             levels=thresholdArray[:-1],
                             linewidths=1,
                             colors=colorsP)
    contourComp = ax2.contour(L,
                              S,
                              compData,
                              levels=thresholdArray[:-1],
                              linewidths=1,
                              colors=colorsP,
                              linestyles='dashed')

    labels = [str(level) + unit for level in thresholdArray[:-1]]
    for j in range(len(contourRef.collections)):
        contourRef.collections[j].set_label(labels[j])

    ax2.set_title('%s difference and contour lines' % name + '\n' +
                  'refMod = full, compMod = dashed line')

    if cfgPath['compType'][0] == 'comModules':
        namePrint = 'refMod:' + cfgPath['compType'][
            1] + '_' + 'compMod:' + cfgPath['compType'][2]
        pU.putAvaNameOnPlot(ax2, namePrint)
    ax2.set_ylim([s[indStartOfRunout], yLim])
    ax2.legend(loc='lower right')
    pU.addColorBar(im3, ax2, ticks, unit, title=name, extend='both')

    # only plot hist and CDF if there is a difference in the data
    if dataDiffPlot.size:
        indDiff = dataDiffPlot > 0
        if indDiff.any():
            ax3 = plt.subplot2grid((3, 3), (2, 1))
            ax4 = plt.subplot2grid((3, 3), (2, 2))
            # there is data to compare in the run out area
            centiles = sPlot.plotHistCDFDiff(
                dataDiffPlot,
                ax4,
                ax3,
                insert='False',
                title=[
                    '%s diff histogram' % name,
                    '%s diff CDF (95%% and 99%% centiles)' % name
                ])
        else:
            log.warning('No data in the run out area!')

    fig.subplots_adjust(hspace=0.3, wspace=0.3)
    outFileName = '_'.join([
        projectName, 'plim',
        str(thresholdValue).replace('.', 'p'), 'sim',
        str(i), 'ContourComparisonToReference'
    ])
    pU.saveAndOrPlot(cfgPath, cfgFlags, outFileName, fig)

    outFilePath = os.path.join(cfgPath['pathResult'], 'pics',
                               outFileName + '.png')

    return outFilePath
Ejemplo n.º 4
0
def visuSimple(rasterTransfo, resAnalysis, newRasters, cfgPath, cfgFlags):
    """
    Plot and save the Peak Pressure Peak Flow depth and Peak speed
    fields after coord transfo
    """
    ####################################
    # Get input data
    # read paths
    projectName = cfgPath['projectName']
    nRef = cfgPath['referenceFile']
    # read data
    plim = resAnalysis['thresholdValue']
    s = rasterTransfo['s']
    l = rasterTransfo['l']
    indStartOfRunout = rasterTransfo['indStartOfRunout']
    dataPressure = newRasters['newRasterPPR']
    rasterdataPres = dataPressure[nRef]
    dataDepth = newRasters['newRasterPFD']
    rasterdataDepth = dataDepth[nRef]
    dataSpeed = newRasters['newRasterPFV']
    rasterdataSpeed = dataSpeed[nRef]
    runout = resAnalysis['runout'][0]

    ############################################
    # prepare for plot
    Cmap = [pU.cmapPres, pU.cmapDepth, pU.cmapSpeed]
    Title = ['Peak Pressure', 'Peak Flow Depth', 'Peak Speed']
    Unit = [
        pU.cfgPlotUtils['unitppr'], pU.cfgPlotUtils['unitpfd'],
        pU.cfgPlotUtils['unitpfv']
    ]
    Data = np.array(([None] * 3))
    Data[0] = rasterdataPres
    Data[1] = rasterdataDepth
    Data[2] = rasterdataSpeed

    ############################################
    # Figure: Pressure depth speed

    fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(pU.figW * 3, pU.figH))
    fig.subplots_adjust(left=0.05,
                        bottom=0.05,
                        right=0.95,
                        top=0.95,
                        hspace=0.3)

    for ax, cmap, data, title, unit in zip(axes.flatten(), Cmap, Data, Title,
                                           Unit):
        maskedArray = np.ma.masked_where(data == 0, data)
        cmap, _, _, norm, ticks = makePalette.makeColorMap(
            cmap, 0.0, np.nanmax(maskedArray), continuous=pU.contCmap)
        cmap.set_bad('w', 1.)
        ax.axhline(y=runout[0], color='k', linestyle='-', label='runout')

        ax.axhline(y=s[indStartOfRunout],
                   color='k',
                   linestyle='--',
                   label='Start or run-out point : %.1f °' %
                   resAnalysis['startOfRunoutAreaAngle'])
        ref3, im = pU.NonUnifIm(ax,
                                l,
                                s,
                                maskedArray,
                                'l [m]',
                                's [m]',
                                extent=[l.min(),
                                        l.max(),
                                        s.min(),
                                        s.max()],
                                cmap=cmap,
                                norm=norm)

        ax.set_title(title)
        ax.legend(loc=4)
        pU.addColorBar(im, ax, ticks, unit)
        pU.putAvaNameOnPlot(ax, cfgPath['projectName'])

    outFileName = '_'.join([
        projectName, 'plim',
        str((plim)).replace('.', 'p'), 'referenceFields'
    ])

    pU.saveAndOrPlot(cfgPath, cfgFlags, outFileName, fig)
Ejemplo n.º 5
0
def visuMass(resAnalysis, cfgPath, cfgFlags):
    """
    Plot and save the results from mass analysis
    """
    ####################################
    # Get input data
    # read paths
    projectName = cfgPath['projectName']
    # read data
    entMassFlowArray = resAnalysis['entMassFlowArray']
    totalMassArray = resAnalysis['totalMassArray']
    entMass = resAnalysis['entMass']
    finalMass = resAnalysis['finalMass']
    time = resAnalysis['time']

    ############################################
    # prepare for plot
    Title = ['Entrained Mass Flow', 'Total Mass']
    Unit = ['Entrained Mass Flow [$kg.s{^-1}$]', 'Total Mass [kg]']
    DataMass = np.array(([None] * 2))
    DataMass[0] = entMassFlowArray
    DataMass[1] = totalMassArray
    ############################################
    # Figure: Pressure depth speed

    fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(pU.figW * 2, pU.figH))
    fig.subplots_adjust(left=0.05,
                        bottom=0.05,
                        right=0.95,
                        top=0.95,
                        hspace=0.3)

    for ax, dataMass, title, unit in zip(axes.flatten(), DataMass, Title,
                                         Unit):
        ax.plot(time, dataMass[0, :], '-k', label='Reference')
        ax.plot(time, dataMass[1, :], '-b', label='Simulation')

        ax.set_title(title + ' function of time')
        ax.legend(loc=4)
        ax.set_xlabel('t [s]')
        ax.set_ylabel(unit)

    ax2 = axes.flatten()[1].twinx()
    # ax2.set_ylabel('z [m]')
    ax2.spines['right'].set_color('r')
    ax2.tick_params(axis='y', colors='r')
    ax2.plot(time, (dataMass[1, :] - dataMass[0, :]) / dataMass[0, :] * 100,
             'r',
             label='total mass')

    if np.any(entMass):
        axes.flatten()[1].text(
            time[-1] / 4,
            (np.nanmin(dataMass[0, :]) + np.nanmax(dataMass[0, :])) / 2,
            'Entrained Mass Difference : %.2f kg \n Relative to entrained mass : %.2f %% \n Relative to total mass : %.2f %% '
            % ((entMass[0] - entMass[1]),
               (entMass[0] - entMass[1]) / entMass[0] * 100,
               (entMass[0] - entMass[1]) / finalMass[0] * 100),
            bbox=dict(boxstyle="square", ec='white', fc='white'),
            horizontalalignment='left',
            verticalalignment='bottom')

    ax2.set_ylabel('Entrained Mass Difference relative to total mass[%]',
                   color='r')

    outFileName = '_'.join([projectName, 'massAnalysis'])
    pU.putAvaNameOnPlot(ax2, cfgPath['projectName'])
    pU.saveAndOrPlot(cfgPath, cfgFlags, outFileName, fig)

    outFilePath = os.path.join(cfgPath['pathResult'], 'pics',
                               outFileName + '.png')

    return outFilePath
Ejemplo n.º 6
0
def visuTransfo(rasterTransfo, inputData, cfgSetup, cfgPath, cfgFlags):
    """
    Plot and save the domain transformation figure
    """
    ####################################
    # Get input data
    resType = cfgSetup['resType']
    unit = pU.cfgPlotUtils['unit' + resType]
    # read paths
    projectName = cfgPath['projectName']
    # read rasterdata
    slRaster = inputData['slRaster']
    xyRaster = inputData['xyRaster']
    # read avaPath with scale
    xPath = rasterTransfo['x']
    yPath = rasterTransfo['y']
    # read domain boundarries with scale
    xllc = rasterTransfo['xllc']
    yllc = rasterTransfo['yllc']
    cellSize = rasterTransfo['cellSize']
    DBXl = rasterTransfo['DBXl'] * cellSize + xllc
    DBXr = rasterTransfo['DBXr'] * cellSize + xllc
    DBYl = rasterTransfo['DBYl'] * cellSize + yllc
    DBYr = rasterTransfo['DBYr'] * cellSize + yllc

    ############################################
    # prepare for plot
    n, m = np.shape(xyRaster)
    x = np.arange(m) * cellSize + xllc
    y = np.arange(n) * cellSize + yllc
    indStartOfRunout = rasterTransfo['indStartOfRunout']
    xx = rasterTransfo['x'][indStartOfRunout]
    yy = rasterTransfo['y'][indStartOfRunout]

    l = rasterTransfo['l']
    s = rasterTransfo['s']

    maskedArray = np.ma.masked_where(xyRaster == 0, xyRaster)
    maskedArraySL = np.ma.masked_where(slRaster == 0, slRaster)

    cmap, _, _, norm, ticks = makePalette.makeColorMap(pU.cmapPres,
                                                       0.0,
                                                       np.nanmax(maskedArray),
                                                       continuous=pU.contCmap)
    cmap.set_under(color='w')

    ############################################
    # Figure: Raster transformation
    fig = plt.figure(figsize=(pU.figW * 2, pU.figH))

    ax1 = plt.subplot(121)

    ref0, im = pU.NonUnifIm(ax1,
                            x,
                            y,
                            maskedArray,
                            'x [m]',
                            'y [m]',
                            extent=[x.min(),
                                    x.max(),
                                    y.min(),
                                    y.max()],
                            cmap=cmap,
                            norm=norm)
    plt.plot(xx,
             yy,
             'k+',
             label='start of run-out area point : %.1f °' %
             rasterTransfo['startOfRunoutAreaAngle'])
    plt.plot(xPath, yPath, 'k--', label='flow path')
    plt.plot(DBXl, DBYl, 'k-', label='domain')
    plt.plot(DBXr, DBYr, 'k-')
    plt.plot([DBXl, DBXr], [DBYl, DBYr], 'k-')

    ax1.set_title('XY Domain')
    ax1.legend(loc=4)
    pU.putAvaNameOnPlot(ax1, cfgPath['projectName'])

    ax2 = plt.subplot(122)

    ref0, im = pU.NonUnifIm(ax2,
                            l,
                            s,
                            maskedArraySL,
                            'l [m]',
                            's [m]',
                            extent=[l.min(),
                                    l.max(),
                                    s.min(),
                                    s.max()],
                            cmap=cmap,
                            norm=norm)
    ax2.axhline(y=s[indStartOfRunout],
                color='k',
                linestyle='--',
                label='start of run-out area point : %.1f °' %
                rasterTransfo['startOfRunoutAreaAngle'])

    ax2.set_title('sl Domain' + '\n' + 'Black = out of raster')
    ax2.legend(loc=4)
    pU.addColorBar(im, ax2, ticks, unit)

    outFileName = '_'.join([projectName, 'DomainTransformation'])
    pU.saveAndOrPlot(cfgPath, cfgFlags, outFileName, fig)
Ejemplo n.º 7
0
def visuRunoutStat(rasterTransfo, resAnalysis, newRasters, cfgSetup, cfgPath,
                   cfgFlags):
    """
    Plot and save the Peak field  distribution after coord transfo
    used when more then 2 simulations are compared
    """
    ####################################
    # Get input data
    resType = cfgSetup['resType']
    thresholdValue = cfgSetup['thresholdValue']
    unit = pU.cfgPlotUtils['unit' + resType]
    name = pU.cfgPlotUtils['name' + resType]
    # read paths
    projectName = cfgPath['projectName']
    nRef = cfgPath['referenceFile']
    # read data
    s = rasterTransfo['s']
    l = rasterTransfo['l']
    indStartOfRunout = rasterTransfo['indStartOfRunout']
    dataPressure = newRasters['newRaster' + resType.upper()]
    rasterdataPres = dataPressure[nRef]
    runout = resAnalysis['runout'][0]
    PPRCrossMax = resAnalysis[resType.upper() + 'CrossMax']

    ############################################
    # prepare for plot
    pMean = np.mean(PPRCrossMax, axis=0)
    pMedian = np.median(PPRCrossMax, axis=0)
    pPercentile = np.percentile(PPRCrossMax, [2.5, 50, 97.5], axis=0)

    maskedArray = np.ma.masked_where(rasterdataPres == 0, rasterdataPres)

    cmap, _, _, norm, ticks = makePalette.makeColorMap(pU.cmapPres,
                                                       0.0,
                                                       np.nanmax(maskedArray),
                                                       continuous=pU.contCmap)
    cmap.set_bad('w', 1.)

    ############################################
    # Figure: Analysis runout
    fig = plt.figure(figsize=(pU.figW * 2, pU.figH))
    ax1 = plt.subplot(121)

    ax1.axhline(y=np.max(runout),
                color='k',
                linestyle='-.',
                label='runout max')
    ax1.axhline(y=np.average(runout),
                color='k',
                linestyle='-',
                label='runout mean')
    ax1.axhline(y=np.min(runout), color='k', linestyle=':', label='runout min')

    ax1.axhline(y=s[indStartOfRunout],
                color='k',
                linestyle='--',
                label='start of run-out area point : %.1f °' %
                resAnalysis['startOfRunoutAreaAngle'])
    ref5, im = pU.NonUnifIm(ax1,
                            l,
                            s,
                            maskedArray,
                            'l [m]',
                            's [m]',
                            extent=[l.min(),
                                    l.max(),
                                    s.min(),
                                    s.max()],
                            cmap=cmap,
                            norm=norm)

    ax1.set_title('Peak Pressure 2D plot for the reference')
    ax1.legend(loc=4)
    pU.putAvaNameOnPlot(ax1, projectName)

    pU.addColorBar(im, ax1, ticks, unit)

    ax2 = plt.subplot(122)

    ax2.fill_betweenx(s,
                      pPercentile[2],
                      pPercentile[0],
                      facecolor=[.8, .8, .8],
                      alpha=0.5,
                      label='quantiles')
    matplotlib.patches.Patch(alpha=0.5, color=[.8, .8, .8])
    ax2.plot(pMedian, s, color='r', label='median')
    ax2.plot(pMean, s, color='b', label='mean')

    ax2.set_title('%s distribution along the path between runs' % name)
    ax2.legend(loc=4)
    ax2.set_ylabel('s [m]')
    ax2.set_ylim([s.min(), s.max()])
    ax2.set_xlim(auto=True)
    ax2.set_xlabel('$P_{max}(s)$ [%s]' % unit)

    outFileName = '_'.join([
        projectName, resType, 'thresholdValue',
        str(thresholdValue).replace('.', 'p'), 'slComparisonStat'
    ])

    pU.saveAndOrPlot(cfgPath, cfgFlags, outFileName, fig)
Ejemplo n.º 8
0
def visuRunoutComp(rasterTransfo, resAnalysis, newRasters, cfgSetup, cfgPath,
                   cfgFlags):
    """
    Plot and save the Peak Fields distribution (max mean per cross section)
    after coordinate transformation
    """
    ####################################
    # Get input data
    resType = cfgSetup['resType']
    thresholdValue = cfgSetup['thresholdValue']
    # read paths
    projectName = cfgPath['projectName']
    # read data
    s = rasterTransfo['s']
    l = rasterTransfo['l']
    PPRCrossMax = resAnalysis['PPRCrossMax']
    PPRCrossMean = resAnalysis['PPRCrossMean']
    PFDCrossMax = resAnalysis['PFDCrossMax']
    PFDCrossMean = resAnalysis['PFDCrossMean']
    PFVCrossMax = resAnalysis['PFVCrossMax']
    PFVCrossMean = resAnalysis['PFVCrossMean']

    ############################################
    # prepare for plot
    title = ['Pressure ', 'Flow Depth ', 'Flow Velocity ']
    unit = ['$P(s)$ [kPa]', '$fd(s)$ [m]', '$v(s) [m.s^{-1}]$']
    dataMax = np.array(([None] * 3))
    dataMax[0] = PPRCrossMax
    dataMax[1] = PFDCrossMax
    dataMax[2] = PFVCrossMax

    dataMean = np.array(([None] * 3))
    dataMean[0] = PPRCrossMean
    dataMean[1] = PFDCrossMean
    dataMean[2] = PFVCrossMean

    ############################################
    # Figure: Pressure depth speed

    fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(pU.figW * 3, pU.figH))
    fig.subplots_adjust(left=0.05,
                        bottom=0.05,
                        right=0.95,
                        top=0.95,
                        hspace=0.3)

    for ax, maxVal, meanVal, titleVal, unitVal in zip(axes.flatten(), dataMax,
                                                      dataMean, title, unit):
        ax.plot(maxVal[0, :], s, '--k', label='Max Reference')
        ax.plot(meanVal[0, :], s, '-k', label='Mean Reference')
        ax.plot(maxVal[1, :], s, '--b', label='Max Simulation')
        ax.plot(meanVal[1, :], s, '-b', label='Mean Simulation')

        ax.set_title(titleVal + 'distribution along path')
        ax.legend(loc='best')
        ax.set_ylabel('s [m]')
        ax.set_ylim([s.min(), s.max()])
        ax.set_xlim(auto=True)
        ax.set_xlabel(unitVal)
    pU.putAvaNameOnPlot(ax, projectName)

    outFileName = '_'.join([
        projectName, resType, 'thresholdValue',
        str(thresholdValue).replace('.', 'p'), 'slComparison'
    ])
    pU.saveAndOrPlot(cfgPath, cfgFlags, outFileName, fig)

    outFilePath = os.path.join(cfgPath['pathResult'], 'pics',
                               outFileName + '.png')

    return outFilePath
Ejemplo n.º 9
0
def plotAllPeakFields(avaDir, cfg, cfgFLAGS, modName):
    """ Plot all peak fields and return dictionary with paths to plots

        Parameters
        ----------
        avaDir : str
            path to avalanche directoy
        cfg : dict
            configuration used to perform simulations
        cfgFLAGS : str
            general configuration, required to define if plots saved to reports directoy
        modName : str
            name of module that has been used to produce data to be plotted

        Returns
        -------
        plotDict : dict
            dictionary with info on plots, like path to plot
        """

    # Load all infos on simulations
    inputDir = os.path.join(avaDir, 'Outputs', modName, 'peakFiles')
    peakFiles = fU.makeSimDict(inputDir, '', avaDir)

    demFile = gI.getDEMPath(avaDir)
    demData = IOf.readRaster(demFile)
    demField = demData['rasterData']

    # Output directory
    if cfgFLAGS.getboolean('ReportDir'):
        outDir = os.path.join(avaDir, 'Outputs', modName, 'reports')
        fU.makeADir(outDir)
    else:
        outDir = os.path.join(avaDir, 'Outputs', 'out1Peak')
        fU.makeADir(outDir)

    # Initialise plot dictionary with simulation names
    plotDict = {}
    for sName in peakFiles['simName']:
        plotDict[sName] = {}

    # Loop through peakFiles and generate plot
    for m in range(len(peakFiles['names'])):

        # Load names and paths of peakFiles
        name = peakFiles['names'][m]
        fileName = peakFiles['files'][m]
        avaName = peakFiles['avaName'][m]
        log.debug('now plot %s:' % (fileName))

        # Load data
        raster = IOf.readRaster(fileName)
        data = raster['rasterData']

        # constrain data to where there is data
        cellSize = peakFiles['cellSize'][m]
        rowsMin, rowsMax, colsMin, colsMax = pU.constrainPlotsToData(
            data, cellSize)
        dataConstrained = data[rowsMin:rowsMax + 1, colsMin:colsMax + 1]
        demConstrained = demField[rowsMin:rowsMax + 1, colsMin:colsMax + 1]

        data = np.ma.masked_where(dataConstrained == 0.0, dataConstrained)
        unit = pU.cfgPlotUtils['unit%s' % peakFiles['resType'][m]]

        # Set extent of peak file
        ny = data.shape[0]
        nx = data.shape[1]
        Ly = ny * cellSize
        Lx = nx * cellSize

        # Figure  shows the result parameter data
        fig = plt.figure(figsize=(pU.figW, pU.figH))
        fig, ax = plt.subplots()
        # choose colormap
        cmap, _, _, norm, ticks = makePalette.makeColorMap(
            pU.cmapPres, np.amin(data), np.amax(data), continuous=pU.contCmap)
        cmap.set_bad(alpha=0)
        rowsMinPlot = rowsMin * cellSize
        rowsMaxPlot = (rowsMax + 1) * cellSize
        colsMinPlot = colsMin * cellSize
        colsMaxPlot = (colsMax + 1) * cellSize
        im0 = ax.imshow(
            demConstrained,
            cmap='Greys',
            extent=[colsMinPlot, colsMaxPlot, rowsMinPlot, rowsMaxPlot],
            origin='lower',
            aspect='equal')
        im1 = ax.imshow(
            data,
            cmap=cmap,
            extent=[colsMinPlot, colsMaxPlot, rowsMinPlot, rowsMaxPlot],
            origin='lower',
            aspect='equal')
        pU.addColorBar(im1, ax, ticks, unit)

        title = str('%s' % name)
        ax.set_title(title)
        ax.set_xlabel('x [m]')
        ax.set_ylabel('y [m]')

        plotName = os.path.join(outDir, '%s.%s' % (name, pU.outputFormat))

        pU.putAvaNameOnPlot(ax, avaDir)

        fig.savefig(plotName)
        if cfgFLAGS.getboolean('showPlot'):
            plt.show()
        plotPath = os.path.join(os.getcwd(), plotName)
        plotDict[peakFiles['simName'][m]].update(
            {peakFiles['resType'][m]: plotPath})
        plt.close('all')

    return plotDict
Ejemplo n.º 10
0
def plotAllFields(avaDir, inputDir, outDir, cfg):
    """ Plot all fields within given directory and save to outDir

        Parameters
        ----------
        avaDir : str
            path to avalanche directoy
        inputDir : str
            path to input directoy
        outDir : str
            path to directoy where plots shall be saved to
        cfg : dict
            configuration settings

        """

    # Load all infos on simulations
    peakFiles = glob.glob(inputDir + os.sep + '*.asc')

    # create out dir if not allready existing
    fU.makeADir(outDir)

    # Loop through peakFiles and generate plot
    for filename in peakFiles:

        # Load data
        raster = IOf.readRaster(filename)
        data = raster['rasterData']
        data = np.ma.masked_where(data == 0.0, data)
        name = os.path.splitext(os.path.basename(filename))[0]

        # get header info for file writing
        header = raster['header']
        cellSize = header.cellsize

        # Set extent of peak file
        ny = data.shape[0]
        nx = data.shape[1]
        Ly = ny * cellSize
        Lx = nx * cellSize
        unit = pU.cfgPlotUtils['unit%s' % cfg['GENERAL']['peakVar']]

        # Figure  shows the result parameter data
        fig = plt.figure(figsize=(pU.figW, pU.figH))
        fig, ax = plt.subplots()
        # choose colormap
        cmap, _, _, norm, ticks = makePalette.makeColorMap(
            pU.cmapPres, np.amin(data), np.amax(data), continuous=pU.contCmap)
        cmap.set_bad('w')
        im1 = ax.imshow(data,
                        cmap=cmap,
                        extent=[0, Lx, 0, Ly],
                        origin='lower',
                        aspect=nx / ny)
        pU.addColorBar(im1, ax, ticks, unit)

        title = str('%s' % name)
        ax.set_title(title)
        ax.set_xlabel('x [m]')
        ax.set_ylabel('y [m]')

        plotName = os.path.join(outDir, '%s.%s' % (name, pU.outputFormat))

        pU.putAvaNameOnPlot(ax, avaDir)

        fig.savefig(plotName)
        plt.close('all')