def test_rule_inherit(self): """ Tests if TAF forecast periods selectively inherit features to calculate flight rules """ report = ( "CYKF 020738Z 0208/0220 34005KT P6SM FEW015 BKN070 " "FM020900 VRB03KT P6SM FEW070 SCT120 " "BECMG 0214/0216 12006KT " "FM021800 14008KT P6SM BKN025 OVC090" ) expected_rules = ('VFR', 'VFR', 'VFR', 'MVFR',) tafobj = Taf(report[:4]) tafobj.update(report) for i, line in enumerate(tafobj.data.forecast): self.assertEqual(line.flight_rules, expected_rules[i])
def test_prob_tempo(self): """ Non-PROB types should take precident but still fill the probability value """ report = ("EGLL 192253Z 2000/2106 28006KT 9999 BKN035 " "PROB30 TEMPO 2004/2009 BKN012 " "PROB30 TEMPO 2105/2106 8000 BKN006") tafobj = Taf('EGLL') tafobj.update(report) lines = tafobj.data.forecast for line in lines: self.assertIsInstance(line.start_time, structs.Timestamp) self.assertIsInstance(line.end_time, structs.Timestamp) for i in range(1, 3): self.assertEqual(lines[i].type, 'TEMPO') self.assertEqual(lines[i].probability.value, 30)
def test_taf_ete(self): """ Performs an end-to-end test of all TAF JSON files """ nodate = lambda s: s[s.find('-')+2:] for path in glob(os.path.dirname(os.path.realpath(__file__))+'/taf/*.json'): ref = json.load(open(path)) station = Taf(path.split('/')[-1][:4]) self.assertIsNone(station.last_updated) self.assertTrue(station.update(ref['data']['raw'])) self.assertIsInstance(station.last_updated, datetime) # Clear timestamp due to parse_date limitations nodt = deepcopy(station.data) for key in ('time', 'start_time', 'end_time'): setattr(nodt, key, None) for i in range(len(nodt.forecast)): for key in ('start_time', 'end_time'): setattr(nodt.forecast[i], key, None) self.assertEqual(asdict(nodt), ref['data']) self.assertEqual(asdict(station.translations), ref['translations']) self.assertEqual(station.summary, ref['summary']) self.assertEqual(nodate(station.speech), nodate(ref['speech'])) self.assertEqual(asdict(station.station_info), ref['station_info'])
def test_taf_ete(self): """ Performs an end-to-end test of all TAF JSON files """ nodate = lambda s: s[s.find("-") + 2 :] for path in Path(__file__).parent.joinpath("taf").glob("*.json"): ref = json.load(path.open()) station = Taf(path.stem) self.assertIsNone(station.last_updated) self.assertTrue(station.update(ref["data"]["raw"])) self.assertIsInstance(station.last_updated, datetime) # Clear timestamp due to parse_date limitations nodt = deepcopy(station.data) for key in ("time", "start_time", "end_time"): setattr(nodt, key, None) for i in range(len(nodt.forecast)): for key in ("start_time", "end_time"): setattr(nodt.forecast[i], key, None) self.assertEqual(asdict(nodt), ref["data"]) self.assertEqual(asdict(station.translations), ref["translations"]) self.assertEqual(station.summary, ref["summary"]) self.assertEqual(nodate(station.speech), nodate(ref["speech"])) self.assertEqual(asdict(station.station_info), ref["station_info"])
def test_wind_shear(self): """ Wind shear should be recognized as its own element in addition to wind """ report = ("TAF AMD CYOW 282059Z 2821/2918 09008KT WS015/20055KT P6SM BKN220 " "BECMG 2821/2823 19015G25KT " "FM290300 21013G23KT P6SM -SHRA BKN040 OVC100 " "TEMPO 2903/2909 4SM BR OVC020 " "FM290900 25012KT P6SM SCT030 " "FM291300 32017G27KT P6SM OVC030 " "TEMPO 2913/2918 P6SM -SHRA OVC020 RMK NXT FCST BY 290000Z") taf = Taf('CYBC') taf.update(report) lines = taf.data.forecast self.assertEqual(len(lines), 7) self.assertEqual(lines[0].wind_shear, 'WS015/20055') self.assertEqual(taf.translations.forecast[1].clouds, None)
def test_prob_line(self): """ Even though PROB__ is not in TAF_NEWLINE, it should still separate, add a new line, and include the prob value in line.probability """ report = ("TAF AMD CYBC 271356Z 2714/2802 23015G25KT P6SM BKN090 " "TEMPO 2714/2718 P6SM -SHRA BKN060 OVC090 " "FM271800 22015G25KT P6SM OVC040 " "TEMPO 2718/2724 6SM -SHRA " "PROB30 2718/2724 VRB25G35KT 1SM +TSRA BR BKN020 OVC040CB " "FM280000 23008KT P6SM BKN040 RMK FCST BASED ON AUTO OBS. NXT FCST BY 272000Z") taf = Taf('CYBC') taf.update(report) lines = taf.data.forecast self.assertEqual(len(lines), 6) self.assertEqual(lines[3].probability, None) self.assertEqual(lines[4].probability, core.make_number('30')) self.assertTrue(lines[4].raw.startswith('PROB30'))
def test_prob_end(self): """ PROB and TEMPO lines are discrete times and should not affect FROM times """ report = ("MMMX 242331Z 2500/2606 24005KT P6SM VC RA SCT020CB SCT080 BKN200 TX25/2521Z TN14/2513Z " "TEMPO 2500/2504 6SM TSRA BKN020CB " "FM250600 04010KT P6SM SCT020 BKN080 " "TEMPO 2512/2515 3SM HZ BKN015 " "FM251600 22005KT 4SM HZ BKN020 " "FM251800 22010KT 6SM HZ SCT020 BKN200 " "PROB40 2522/2602 P6SM TSRA BKN020CB") taf = Taf('CYBC') taf.update(report) lines = taf.data.forecast self.assertEqual(lines[0].start_time.repr, '2500') self.assertEqual(lines[0].end_time.repr, '2506') self.assertEqual(lines[1].start_time.repr, '2500') self.assertEqual(lines[1].end_time.repr, '2504') self.assertEqual(lines[-2].start_time.repr, '2518') self.assertEqual(lines[-2].end_time.repr, '2606') self.assertEqual(lines[-1].start_time.repr, '2522') self.assertEqual(lines[-1].end_time.repr, '2602')