Ejemplo n.º 1
0
def test_groupby():
    array = ak.Array(
        [
            {"x": 1, "y": 1.1},
            {"x": 2, "y": 2.2},
            {"x": 1, "y": 1.1},
            {"x": 3, "y": 3.3},
            {"x": 1, "y": 1.1},
            {"x": 2, "y": 2.2},
        ]
    )
    sorted = array[ak.argsort(array.x)]
    assert sorted.x.tolist() == [1, 1, 1, 2, 2, 3]
    assert ak.run_lengths(sorted.x).tolist() == [3, 2, 1]
    assert ak.unflatten(sorted, ak.run_lengths(sorted.x)).tolist() == [
        [{"x": 1, "y": 1.1}, {"x": 1, "y": 1.1}, {"x": 1, "y": 1.1}],
        [{"x": 2, "y": 2.2}, {"x": 2, "y": 2.2}],
        [{"x": 3, "y": 3.3}],
    ]

    array = ak.Array(
        [
            [{"x": 1, "y": 1.1}, {"x": 2, "y": 2.2}, {"x": 1, "y": 1.1}],
            [{"x": 3, "y": 3.3}, {"x": 1, "y": 1.1}, {"x": 2, "y": 2.2}],
        ]
    )
    sorted = array[ak.argsort(array.x)]
    assert sorted.x.tolist() == [[1, 1, 2], [1, 2, 3]]
    assert ak.run_lengths(sorted.x).tolist() == [[2, 1], [1, 1, 1]]
    counts = ak.flatten(ak.run_lengths(sorted.x), axis=None)
    assert ak.unflatten(sorted, counts, axis=-1).tolist() == [
        [[{"x": 1, "y": 1.1}, {"x": 1, "y": 1.1}], [{"x": 2, "y": 2.2}]],
        [[{"x": 1, "y": 1.1}], [{"x": 2, "y": 2.2}], [{"x": 3, "y": 3.3}]],
    ]
Ejemplo n.º 2
0
 def get_taus(self, apply_selection=True):
     events = self.get_events()
     taus_dict = {"e": events.tau_e, "pt": events.tau_pt, "eta": events.tau_eta, "phi": events.tau_phi,
                  "looseIsoAbs": events.tau_looseIsoAbs, "looseIsoRel": events.tau_looseIsoRel,
                  "mediumIsoAbs": events.tau_mediumIsoAbs, "mediumIsoRel": events.tau_mediumIsoRel,
                  "tightIsoAbs": events.tau_tightIsoAbs, "tightIsoRel": events.tau_tightIsoRel,
                  "gen_e": events.gen_tau_e, "gen_pt": events.gen_tau_pt, "gen_eta": events.gen_tau_eta,
                  "gen_phi": events.gen_tau_phi,
                  "lepton_gen_match": events.lepton_gen_match, "deepTau_VSjet": events.deepTau_VSjet}
     if self.is_old:
         taus = ak.zip(taus_dict)
         index = ak.argsort(taus.pt, ascending=False)
         taus = taus[index]
         tau_1, tau_2 = ak.unzip(ak.combinations(taus, 2, axis=1))
     else:
         taus_dict["vz"] = events.tau_vz
         taus = ak.zip(taus_dict)
         index = ak.argsort(taus.pt, ascending=False)
         taus = taus[index]
         tau_1, tau_2 = ak.unzip(ak.combinations(taus, 2, axis=1))
         if apply_selection:
             L1taus = ak.zip({"e": events.L1tau_e, "pt": events.L1tau_pt, "eta": events.L1tau_eta,
                              "phi": events.L1tau_phi})
             # apply L1seed correction in case Pt28 and Pt30 seeds are considered
             L1taus, taus = L1seed_correction(L1taus, taus)
             # match taus with L1 taus
             taus = L1THLTTauMatching(L1taus, taus)
             tau_1, tau_2 = HLTJetPairDzMatchFilter(taus)
     # Return all possible pairs of tau which pass preselection
     return tau_1, tau_2
Ejemplo n.º 3
0
def test_NumpyArray():
    array = ak.layout.NumpyArray(np.array([3.3, 2.2, 1.1, 5.5, 4.4]))
    assert ak.to_list(ak.argsort(array, axis=0, ascending=True,
                                 stable=False)) == [
                                     2,
                                     1,
                                     0,
                                     4,
                                     3,
                                 ]
    assert ak.to_list(ak.argsort(array, axis=0, ascending=False,
                                 stable=False)) == [
                                     3,
                                     4,
                                     0,
                                     1,
                                     2,
                                 ]

    assert ak.to_list(ak.sort(array, axis=0, ascending=True,
                              stable=False)) == [
                                  1.1,
                                  2.2,
                                  3.3,
                                  4.4,
                                  5.5,
                              ]
    assert ak.to_list(ak.sort(array, axis=0, ascending=False,
                              stable=False)) == [
                                  5.5,
                                  4.4,
                                  3.3,
                                  2.2,
                                  1.1,
                              ]

    array2 = ak.layout.NumpyArray(np.array([[3.3, 2.2, 4.4], [1.1, 5.5, 3.3]]))

    assert ak.to_list(ak.sort(array2, axis=1, ascending=True,
                              stable=False)) == ak.to_list(
                                  np.sort(array2, axis=1))
    assert ak.to_list(ak.sort(array2, axis=0, ascending=True,
                              stable=False)) == ak.to_list(
                                  np.sort(array2, axis=0))

    assert ak.to_list(ak.argsort(array2, axis=1, ascending=True,
                                 stable=False)) == ak.to_list(
                                     np.argsort(array2, 1))
    assert ak.to_list(ak.argsort(array2, axis=0, ascending=True,
                                 stable=False)) == ak.to_list(
                                     np.argsort(array2, 0))

    with pytest.raises(ValueError) as err:
        ak.sort(array2, axis=2, ascending=True, stable=False)
    assert str(err.value).startswith(
        "axis=2 exceeds the depth of the nested list structure (which is 2)")
def test_EmptyArray():
    array = ak.layout.EmptyArray()
    assert ak.to_list(ak.sort(array)) == []
    assert ak.to_list(ak.argsort(array)) == []
    assert str(ak.type(ak.sort(array))) == "0 * float64"
    assert str(ak.type(ak.argsort(array))) == "0 * int64"

    array2 = ak.Array([[], [], []])
    assert ak.to_list(ak.argsort(array2)) == [[], [], []]
    assert str(ak.type(ak.argsort(array2))) == "3 * var * int64"
Ejemplo n.º 5
0
def test_argsort():
    array = ak.Array([1, 2, None, 3, 0, None])
    assert ak.argsort(array).tolist() == [4, 0, 1, 3, 2, 5]
    assert array[ak.argsort(array)].tolist() == [
        0,
        1,
        2,
        3,
        None,
        None,
    ]
def test_3d():
    array = ak.layout.NumpyArray(
        np.array(
            [
                # axis 2:    0       1       2       3       4         # axis 1:
                [
                    [1.1, 2.2, 3.3, 4.4, 5.5],  # 0
                    [6.6, 7.7, 8.8, 9.9, 10.10],  # 1
                    [11.11, 12.12, 13.13, 14.14, 15.15],
                ],  # 2
                [
                    [-1.1, -2.2, -3.3, -4.4, -5.5],  # 3
                    [-6.6, -7.7, -8.8, -9.9, -10.1],  # 4
                    [-11.11, -12.12, -13.13, -14.14, -15.15],
                ],
            ]
        )
    )  # 5
    assert ak.to_list(
        ak.argsort(array, axis=2, ascending=True, stable=False)
    ) == ak.to_list(np.argsort(array, 2))
    assert ak.to_list(
        ak.sort(array, axis=2, ascending=True, stable=False)
    ) == ak.to_list(np.sort(array, 2))
    assert ak.to_list(
        ak.argsort(array, axis=1, ascending=True, stable=False)
    ) == ak.to_list(np.argsort(array, 1))
    assert ak.to_list(
        ak.sort(array, axis=1, ascending=True, stable=False)
    ) == ak.to_list(np.sort(array, 1))

    assert ak.to_list(ak.sort(array, axis=1, ascending=False, stable=False)) == [
        [
            [11.11, 12.12, 13.13, 14.14, 15.15],
            [6.6, 7.7, 8.8, 9.9, 10.1],
            [1.1, 2.2, 3.3, 4.4, 5.5],
        ],
        [
            [-1.1, -2.2, -3.3, -4.4, -5.5],
            [-6.6, -7.7, -8.8, -9.9, -10.1],
            [-11.11, -12.12, -13.13, -14.14, -15.15],
        ],
    ]

    assert ak.to_list(
        ak.sort(array, axis=0, ascending=True, stable=False)
    ) == ak.to_list(np.sort(array, 0))
    assert ak.to_list(
        ak.argsort(array, axis=0, ascending=True, stable=False)
    ) == ak.to_list(np.argsort(array, 0))
Ejemplo n.º 7
0
def test_ByteMaskedArray():
    content = ak.from_iter(
        [[0.0, 1.1, 2.2], [], [3.3, 4.4], [5.5], [6.6, 7.7, 8.8, 9.9]],
        highlevel=False)
    mask = ak.layout.Index8(np.array([0, 0, 1, 1, 0], dtype=np.int8))
    array = ak.layout.ByteMaskedArray(mask, content, valid_when=False)
    assert ak.to_list(ak.argsort(array, axis=0, ascending=True,
                                 stable=False)) == [
                                     [0, 0, 0],
                                     [],
                                     [2, 2, 2, 2],
                                     None,
                                     None,
                                 ]

    assert ak.to_list(ak.sort(array, axis=0, ascending=True,
                              stable=False)) == [
                                  [0.0, 1.1, 2.2],
                                  [],
                                  [6.6, 7.7, 8.8, 9.9],
                                  None,
                                  None,
                              ]

    assert ak.to_list(ak.sort(array, axis=0, ascending=False,
                              stable=False)) == [
                                  [6.6, 7.7, 8.8],
                                  [],
                                  [0.0, 1.1, 2.2, 9.9],
                                  None,
                                  None,
                              ]

    assert ak.to_list(ak.argsort(array, axis=1, ascending=True,
                                 stable=False)) == [
                                     [0, 1, 2],
                                     [],
                                     None,
                                     None,
                                     [0, 1, 2, 3],
                                 ]

    assert ak.to_list(array.sort(1, False, False)) == [
        [2.2, 1.1, 0.0],
        [],
        None,
        None,
        [9.9, 8.8, 7.7, 6.6],
    ]
Ejemplo n.º 8
0
def run_deltar_matching(store,
                        target,
                        drname='deltaR',
                        radius=0.4,
                        unique=False,
                        sort=False):
    """
  Running a delta R matching of some object collection "store" of dimension NxS
  with some target collection "target" of dimension NxT, The return object will
  have dimension NxSxT' where objects in the T' contain all "target" objects
  within the delta R radius. The delta R between the store and target object will
  be stored in the field `deltaR`. If the unique flag is turned on, then objects
  in the target collection will only be associated to the closest object. If the
  sort flag is turned on, then the target collection will be sorted according to
  the computed `deltaR`.
  """
    _, target = ak.unzip(ak.cartesian([store.eta, target], nested=True))
    target[drname] = delta_r(store, target)
    if unique:  # Additional filtering
        t_index = ak.argmin(target[drname], axis=-2)
        s_index = ak.local_index(store.eta, axis=-1)
        _, t_index = ak.unzip(ak.cartesian([s_index, t_index], nested=True))
        target = target[s_index == t_index]

    # Cutting on the computed delta R
    target = target[target[drname] < radius]

    # Sorting according to the computed delta R
    if sort:
        idx = ak.argsort(target[drname], axis=-1)
        target = target[idx]
    return target
def test_sort_bytestrings():
    array = ak.from_iter(
        [b"one", b"two", b"three", b"two", b"two", b"one", b"three"], highlevel=False
    )
    assert ak.to_list(array) == [
        b"one",
        b"two",
        b"three",
        b"two",
        b"two",
        b"one",
        b"three",
    ]

    assert ak.to_list(ak.sort(array, axis=0, ascending=True, stable=False)) == [
        b"one",
        b"one",
        b"three",
        b"three",
        b"two",
        b"two",
        b"two",
    ]

    assert ak.to_list(ak.argsort(array, axis=0, ascending=True, stable=True)) == [
        0,
        5,
        2,
        6,
        1,
        3,
        4,
    ]
Ejemplo n.º 10
0
def sort_constituents_by_var(taus, c_type, var, ascending=True):
    """
    Sort constituents in array `taus[c_type]`` inplace according to the values of `var`.
    This transformation is needed for `fill_feature_tensor()` to resolve the case of multiple cell entries,
    where the highest pt candidate needs to be filled into the grid cell.
    """
    idx = ak.argsort(taus[c_type][var], ascending=ascending)
    taus[c_type] = taus[c_type][idx]
def test_sort_zero_length_arrays():
    array = ak.layout.IndexedArray64(
        ak.layout.Index64([]), ak.layout.NumpyArray([1, 2, 3])
    )
    assert ak.to_list(array) == []
    assert ak.to_list(ak.sort(array)) == []
    assert ak.to_list(ak.argsort(array)) == []

    content0 = ak.from_iter([[1.1, 2.2, 3.3], [], [4.4, 5.5]], highlevel=False)
    content1 = ak.from_iter(["one", "two", "three", "four", "five"], highlevel=False)
    tags = ak.layout.Index8([])
    index = ak.layout.Index32([])
    array = ak.layout.UnionArray8_32(tags, index, [content0, content1])
    assert ak.to_list(array) == []
    assert ak.to_list(ak.sort(array)) == []

    content = ak.from_iter(
        [[0.0, 1.1, 2.2], [], [3.3, 4.4], [5.5], [6.6, 7.7, 8.8, 9.9]], highlevel=False
    )
    mask = ak.layout.Index8([])
    array = ak.layout.ByteMaskedArray(mask, content, valid_when=False)
    assert ak.to_list(array) == []
    assert ak.to_list(ak.sort(array)) == []
    assert ak.to_list(ak.argsort(array)) == []

    array = ak.layout.NumpyArray([])
    assert ak.to_list(array) == []
    assert ak.to_list(ak.sort(array)) == []
    assert ak.to_list(ak.argsort(array)) == []

    content = ak.layout.NumpyArray(
        np.array([1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9])
    )
    starts1 = ak.layout.Index64([])
    stops1 = ak.layout.Index64([])
    offsets1 = ak.layout.Index64(np.array([0]))
    array = ak.layout.ListArray64(starts1, stops1, content)
    assert ak.to_list(array) == []
    assert ak.to_list(ak.sort(array)) == []
    assert ak.to_list(ak.argsort(array)) == []

    array = ak.layout.ListOffsetArray64(offsets1, content)
    assert ak.to_list(array) == []
    assert ak.to_list(ak.sort(array)) == []
    assert ak.to_list(ak.argsort(array)) == []
Ejemplo n.º 12
0
 def get_gen_taus(self):
     events = self.get_gen_events()
     gen_taus = ak.zip({"gen_e": events.gen_tau_e, "gen_pt": events.gen_tau_pt, "gen_eta": events.gen_tau_eta,
                                   "gen_phi": events.gen_tau_phi,
                                   "lepton_gen_match": events.lepton_gen_match})
     index = ak.argsort(gen_taus.gen_pt, ascending=False)
     gen_taus = gen_taus[index]
     gen_tau_1, gen_tau_2 = ak.unzip(ak.combinations(gen_taus, 2, axis=1))
     return gen_tau_1, gen_tau_2
def test_empty_slice():
    # muon = ak.Array([[{"pt": 1.0}], []], with_name="muon")
    electron = ak.Array([[], [{"pt": 1.0}]], with_name="electron")

    electron = electron[electron.pt > 5]

    id = ak.argsort(electron.pt, axis=1)

    assert ak.to_list(electron[id]) == [[], []]
Ejemplo n.º 14
0
def test_keep_None_in_place_test():
    array = ak.Array([[3, 2, 1], [], None, [4, 5]])

    assert ak.to_list(ak.argsort(array, axis=1)) == [
        [2, 1, 0],
        [],
        None,
        [0, 1],
    ]

    assert ak.to_list(ak.sort(array, axis=1)) == [
        [1, 2, 3],
        [],
        None,
        [4, 5],
    ]

    assert ak.to_list(array[ak.argsort(array, axis=1)]) == ak.to_list(
        ak.sort(array, axis=1))
Ejemplo n.º 15
0
def test_second_issue():
    a = ak.layout.NumpyArray(np.arange(122))
    idx = ak.layout.Index64([0, 2, 4, 6, 8, 10, 12])
    a = ak.layout.ListOffsetArray64(idx, a)
    idx = ak.layout.Index64([0, -1, 1, 2, -1, 3, 4, 5])
    a = ak.layout.IndexedOptionArray64(idx, a)
    a = ak.Array(a)
    assert ak.is_valid(a)

    assert ak.is_valid(ak.argsort(a))
    assert a[ak.argsort(a)].tolist() == [
        [0, 1],
        None,
        [2, 3],
        [4, 5],
        None,
        [6, 7],
        [8, 9],
        [10, 11],
    ]
Ejemplo n.º 16
0
def sorted_by_E(data):
    if isinstance(data, ak.Array):
        try:
            tempE = data.E
        except AttributeError:
            raise AttributeError(
                "Needs either correct coordinates or embedded vector backend"
            ) from None
        tmpsort = ak.argsort(tempE, axis=-1)
        return data[tmpsort]
    else:
        return fastjet._swig.sorted_by_E(data)
Ejemplo n.º 17
0
def cluster(inter, classify_by_energy=False):
    """
    Function which clusters the found clusters together.

    To cluster events a weighted mean is computed for time and position.
    The individual interactions are weighted by their energy.
    The energy of clustered interaction is given by the total sum.
    Events can be classified either by the first interaction in time in the
    cluster or by the highest energy deposition.

    Args:
        inter (awkward.Array): Array containing at least the following
            fields: x,y,z,t,ed,cluster_ids, type, parenttype, creaproc,
            edproc.

    Kwargs:
        classify_by_energy (bool): If true events are classified
            according to the properties of the highest energy deposit
            within the cluster. If false cluster is classified according
            to first interaction.

    Returns:
        awkward.Array: Clustered events with nest conform
            classification.
    """

    if len(inter) == 0:
        result_cluster_dtype = [('x', 'float64'), ('y', 'float64'),
                                ('z', 'float64'), ('t', 'float64'),
                                ('ed', 'float64'), ('nestid', 'int64'),
                                ('A', 'int64'), ('Z', 'int64')]
        return ak.from_numpy(np.empty(0, dtype=result_cluster_dtype))
    # Sort interactions by cluster_ids to simplify looping
    inds = ak.argsort(inter['cluster_ids'])
    inter = inter[inds]

    # TODO: Better way to do this with awkward?
    x = inter['x']
    y = inter['y']
    z = inter['z']
    ed = inter['ed']
    time = inter['t']
    ci = inter['cluster_ids']
    types = inter['type']
    parenttype = inter['parenttype']
    creaproc = inter['creaproc']
    edproc = inter['edproc']

    # Init result and cluster:
    res = ak.ArrayBuilder()
    _cluster(x, y, z, ed, time, ci, types, parenttype, creaproc, edproc,
             classify_by_energy, res)
    return res.snapshot()
Ejemplo n.º 18
0
def test_argsort_2d():
    array = ak.Array([[1, 2, None, 3, 0, None], [1, 2, None, 3, 0, None]])
    assert ak.argsort(array).tolist() == [[4, 0, 1, 3, 2, 5], [4, 0, 1, 3, 2, 5]]
    assert array[ak.argsort(array)].tolist() == [
        [
            0,
            1,
            2,
            3,
            None,
            None,
        ],
        [
            0,
            1,
            2,
            3,
            None,
            None,
        ],
    ]
def test_sort():
    assert ak.sort(ak.from_iter([[2 + 4j, 1 + 5j], [],
                                 [3 + 3j]])).tolist() == [
                                     [1 + 5j, 2 + 4j],
                                     [],
                                     [3 + 3j],
                                 ]
    assert ak.argsort(ak.from_iter([[2 + 4j, 1 + 5j], [],
                                    [3 + 3j]])).tolist() == [
                                        [1, 0],
                                        [],
                                        [0],
                                    ]
Ejemplo n.º 20
0
def test_nan():
    array = ak.Array([1, 2, np.nan, 3, 0, np.nan])

    assert ak.argsort(array).tolist() == [
        2,
        5,
        4,
        0,
        1,
        3,
    ]
    # Note, `nan` comparison with `nan` returns False
    assert str(ak.sort(array).tolist()) == "[nan, nan, 0.0, 1.0, 2.0, 3.0]"
def test_argsort():
    array = ak.Array(["one", "two", "three", "four", "five", "six", "seven", "eight"])
    assert ak.argsort(array, axis=-1).tolist() == [7, 4, 3, 0, 6, 5, 2, 1]

    array = ak.Array(
        [["twotwo", "two", "three"], ["four", "five"], [], ["six", "seven", "eight"]]
    )
    assert ak.argsort(array, axis=-1).tolist() == [[2, 1, 0], [1, 0], [], [2, 1, 0]]

    array = ak.Array(
        [
            [["twotwo", "two"], ["three"]],
            [["four", "five"]],
            [],
            [["six"], ["seven", "eight"]],
        ]
    )
    assert ak.argsort(array, axis=-1).tolist() == [
        [[1, 0], [0]],
        [[1, 0]],
        [],
        [[0], [1, 0]],
    ]
def test():
    array = ak.Array([[0, 1, 2, 3], [3, 3, 3, 2, 1]])
    is_valid = array != 3

    assert array.mask[is_valid].tolist() == [[0, 1, 2, None], [None, None, None, 2, 1]]

    assert ak.sort(array.mask[is_valid]).tolist() == [
        [0, 1, 2, None],
        [1, 2, None, None, None],
    ]
    assert ak.argsort(array.mask[is_valid]).tolist() == [
        [0, 1, 2, 3],
        [4, 3, 0, 1, 2],
    ]
def test_argsort():
    array = ak.Array([[1.1, 2.2], [3.3, 3.1]])
    assert ak.argsort(array).tolist() == [[0, 1], [1, 0]]
    assert str(ak.type(ak.argsort(array))) == "2 * var * int64"

    empty_array = ak.Array([[], []])
    assert ak.argsort(empty_array).tolist() == [[], []]
    assert str(ak.type(ak.argsort(empty_array))) == "2 * var * int64"

    select_array = array[array > 5]
    assert select_array.tolist() == [[], []]
    assert str(ak.type(select_array)) == "2 * var * float64"

    assert ak.argsort(select_array).tolist() == [[], []]
    assert str(ak.type(ak.argsort(select_array))) == "2 * var * int64"

    assert ak.argsort(array[array > 5]).tolist() == [[], []]
    assert str(ak.type(ak.argsort(array[array > 5]))) == "2 * var * int64"
Ejemplo n.º 24
0
    def process(self, events):

        output = self.accumulator.identity()

        # we can use a very loose preselection to filter the events. nothing is done with this presel, though
        presel = ak.num(events.Jet) > 0

        ev = events[presel]
        dataset = ev.metadata['dataset']

        # load the config - probably not needed anymore
        cfg = loadConfig()

        #output['totalEvents']['all'] += len(events)
        #output['skimmedEvents']['all'] += len(ev)

        if self.year == 2018:
            triggers = ev.HLT.Ele23_Ele12_CaloIdL_TrackIdL_IsoVL
        elif self.year == 2017:
            triggers = ev.HLT.Ele23_Ele12_CaloIdL_TrackIdL_IsoVL
        elif self.year == 2016:
            triggers = ev.HLT.Ele23_Ele12_CaloIdL_TrackIdL_IsoVL_DZ

        if self.year == 2018:
            lumimask = LumiMask(
                'processors/Cert_314472-325175_13TeV_Legacy2018_Collisions18_JSON.txt'
            )

        ## Electrons
        electron = Collections(ev, "Electron", "tight").get()
        electron = electron[(electron.pt > 25) & (np.abs(electron.eta) < 2.4)]

        loose_electron = Collections(ev, "Electron", "veto").get()
        loose_electron = loose_electron[(loose_electron.pt > 25)
                                        & (np.abs(loose_electron.eta) < 2.4)]

        SSelectron = (ak.sum(electron.charge, axis=1) != 0) & (ak.num(electron)
                                                               == 2)
        OSelectron = (ak.sum(electron.charge, axis=1) == 0) & (ak.num(electron)
                                                               == 2)

        dielectron = choose(electron, 2)
        dielectron_mass = (dielectron['0'] + dielectron['1']).mass
        dielectron_pt = (dielectron['0'] + dielectron['1']).pt

        leading_electron_idx = ak.singletons(ak.argmax(electron.pt, axis=1))
        leading_electron = electron[(leading_electron_idx)]
        leading_electron = leading_electron[(leading_electron.pt > 30)]

        trailing_electron_idx = ak.singletons(ak.argmin(electron.pt, axis=1))
        trailing_electron = electron[trailing_electron_idx]

        ##Muons

        loose_muon = Collections(ev, "Muon", "veto").get()
        loose_muon = loose_muon[(loose_muon.pt > 20)
                                & (np.abs(loose_muon.eta) < 2.4)]

        #jets
        jet = getJets(ev, minPt=40, maxEta=2.4, pt_var='pt', UL=False)
        jet = jet[ak.argsort(
            jet.pt, ascending=False
        )]  # need to sort wrt smeared and recorrected jet pt
        jet = jet[~match(jet, loose_muon,
                         deltaRCut=0.4)]  # remove jets that overlap with muons
        jet = jet[~match(
            jet, electron,
            deltaRCut=0.4)]  # remove jets that overlap with electrons

        ## MET -> can switch to puppi MET
        met_pt = ev.MET.pt
        met_phi = ev.MET.phi

        #selections
        filters = getFilters(ev, year=self.year, dataset=dataset)
        mask = lumimask(ev.run, ev.luminosityBlock)
        ss = (SSelectron)
        os = (OSelectron)
        mass = (ak.min(np.abs(dielectron_mass - 91.2), axis=1) < 15)
        lead_electron = (ak.min(leading_electron.pt, axis=1) > 30)
        jet1 = (ak.num(jet) >= 1)
        jet2 = (ak.num(jet) >= 2)
        num_loose = ((ak.num(loose_electron) == 2) & (ak.num(loose_muon) == 0))

        selection = PackedSelection()
        selection.add('filter', (filters))
        selection.add('mask', (mask))
        selection.add('ss', ss)
        selection.add('os', os)
        selection.add('mass', mass)
        selection.add('leading', lead_electron)
        selection.add('triggers', triggers)
        selection.add('one jet', jet1)
        selection.add('two jets', jet2)
        selection.add('num_loose', num_loose)

        bl_reqs = ['filter'] + ['mass'] + ['mask'] + ['triggers'] + [
            'leading'
        ] + ['num_loose']
        #bl_reqs = ['filter'] + ['mass'] + ['triggers'] + ['leading'] + ['num_loose']

        bl_reqs_d = {sel: True for sel in bl_reqs}
        baseline = selection.require(**bl_reqs_d)

        s_reqs = bl_reqs + ['ss']
        s_reqs_d = {sel: True for sel in s_reqs}
        ss_sel = selection.require(**s_reqs_d)

        o_reqs = bl_reqs + ['os']
        o_reqs_d = {sel: True for sel in o_reqs}
        os_sel = selection.require(**o_reqs_d)

        j1s_reqs = s_reqs + ['one jet']
        j1s_reqs_d = {sel: True for sel in j1s_reqs}
        j1ss_sel = selection.require(**j1s_reqs_d)

        j1o_reqs = o_reqs + ['one jet']
        j1o_reqs_d = {sel: True for sel in j1o_reqs}
        j1os_sel = selection.require(**j1o_reqs_d)

        j2s_reqs = s_reqs + ['two jets']
        j2s_reqs_d = {sel: True for sel in j2s_reqs}
        j2ss_sel = selection.require(**j2s_reqs_d)

        j2o_reqs = o_reqs + ['two jets']
        j2o_reqs_d = {sel: True for sel in j2o_reqs}
        j2os_sel = selection.require(**j2o_reqs_d)

        output["N_jet"].fill(
            dataset=dataset,
            multiplicity=ak.num(jet)[os_sel],
        )

        return output
Ejemplo n.º 25
0
def select_normal(genparts, w_decay_momid):

    columns = ["pt", "eta", "phi", "mass", "pdgId", "charge", "decaytype"]

    # get tops, defined as last copy
    gen_tops = genparts[(genparts.hasFlags(['isLastCopy']))
                        & (genparts.pdgId == 6)]
    gen_tops['charge'] = ak.ones_like(gen_tops.pt) * (2. / 3.)
    gen_tbars = genparts[(genparts.hasFlags(['isLastCopy']))
                         & (genparts.pdgId == -6)]
    gen_tbars['charge'] = ak.ones_like(gen_tbars.pt) * (-2. / 3.)

    # get direct top decay products (children are "isHardProcess" and "isFirstCopy")
    gen_bs = ak.flatten(gen_tops.children[(gen_tops.children.pdgId == 5)],
                        axis=2)
    gen_bs['charge'] = ak.ones_like(gen_bs.pt) * (-1. / 3.)
    gen_bbars = ak.flatten(
        gen_tbars.children[(gen_tbars.children.pdgId == -5)], axis=2)
    gen_bbars['charge'] = ak.ones_like(gen_bbars.pt) * (1. / 3.)
    gen_wplus = ak.flatten(
        gen_tops.children[(gen_tops.children.pdgId == w_decay_momid)], axis=2)
    gen_wplus['charge'] = ak.ones_like(gen_wplus.pt)
    gen_wminus = ak.flatten(
        gen_tbars.children[(gen_tbars.children.pdgId == -1 * w_decay_momid)],
        axis=2)
    gen_wminus['charge'] = ak.ones_like(gen_wminus.pt) * (-1.)

    # get w decay products
    # get last copy of W bosons
    last_gen_wplus = ak.flatten(gen_tops.distinctChildren[
        (gen_tops.distinctChildren.pdgId == w_decay_momid)
        & (gen_tops.distinctChildren.hasFlags(['isLastCopy']))],
                                axis=2)
    last_gen_wminus = ak.flatten(gen_tbars.distinctChildren[
        (gen_tbars.distinctChildren.pdgId == -1 * w_decay_momid)
        & (gen_tbars.distinctChildren.hasFlags(['isLastCopy']))],
                                 axis=2)

    gen_wplus_decaytype = np.zeros(len(gen_wplus))
    gen_wminus_decaytype = np.zeros(len(gen_wminus))
    # up/down partons from last W+
    gen_wpartons_up_fromWplus = ak.flatten(
        last_gen_wplus.children[(np.mod(last_gen_wplus.children.pdgId, 2) == 0)
                                & (np.abs(last_gen_wplus.children.pdgId) < 6)],
        axis=2)
    gen_wpartons_up_fromWplus['charge'] = np.sign(
        gen_wpartons_up_fromWplus.pdgId) * (2. / 3.)
    gen_wplus_decaytype[ak.num(gen_wpartons_up_fromWplus) > 0] = np.ones(
        ak.sum(ak.num(gen_wpartons_up_fromWplus) > 0)) * 2
    gen_wpartons_dw_fromWplus = ak.flatten(
        last_gen_wplus.children[(np.mod(last_gen_wplus.children.pdgId, 2) == 1)
                                & (np.abs(last_gen_wplus.children.pdgId) < 6)],
        axis=2)
    gen_wpartons_dw_fromWplus['charge'] = np.sign(
        gen_wpartons_up_fromWplus.pdgId) * (-1. / 3.)
    # up/down partons from last W-
    gen_wpartons_up_fromWminus = ak.flatten(last_gen_wminus.children[
        (np.mod(last_gen_wminus.children.pdgId, 2) == 0)
        & (np.abs(last_gen_wminus.children.pdgId) < 6)],
                                            axis=2)
    gen_wpartons_up_fromWminus['charge'] = np.sign(
        gen_wpartons_up_fromWminus.pdgId) * (2. / 3.)
    gen_wminus_decaytype[ak.num(gen_wpartons_up_fromWminus) > 0] = np.ones(
        ak.sum(ak.num(gen_wpartons_up_fromWminus) > 0)) * 2
    gen_wpartons_dw_fromWminus = ak.flatten(last_gen_wminus.children[
        (np.mod(last_gen_wminus.children.pdgId, 2) == 1)
        & (np.abs(last_gen_wminus.children.pdgId) < 6)],
                                            axis=2)
    gen_wpartons_dw_fromWminus['charge'] = np.sign(
        gen_wpartons_up_fromWminus.pdgId) * (-1. / 3.)

    # charged leps from last W+
    gen_charged_leps_fromWplus = ak.flatten(
        last_gen_wplus.children[(np.abs(last_gen_wplus.children.pdgId) == 11) |
                                (np.abs(last_gen_wplus.children.pdgId) == 13) |
                                (np.abs(last_gen_wplus.children.pdgId) == 15)],
        axis=2)
    gen_charged_leps_fromWplus['charge'] = ak.ones_like(
        gen_charged_leps_fromWplus.pdgId)
    gen_wplus_decaytype[ak.num(gen_charged_leps_fromWplus) > 0] = np.ones(
        ak.sum(ak.num(gen_charged_leps_fromWplus) > 0))
    # add decaytype (0 is INVALID, 1 is LEPTONIC, 2 is HADRONIC)
    gen_wplus['decaytype'] = ak.unflatten(gen_wplus_decaytype,
                                          ak.num(gen_wplus))
    gen_tops['decaytype'] = gen_wplus['decaytype']  # set decaytype for tops
    gen_bs['decaytype'] = gen_wplus['decaytype']  # set decaytype for bs
    # neutral leps from last W+
    gen_neutral_leps_fromWplus = ak.flatten(
        last_gen_wplus.children[(np.abs(last_gen_wplus.children.pdgId) == 12) |
                                (np.abs(last_gen_wplus.children.pdgId) == 14) |
                                (np.abs(last_gen_wplus.children.pdgId) == 16)],
        axis=2)
    gen_neutral_leps_fromWplus['charge'] = ak.zeros_like(
        gen_neutral_leps_fromWplus.pt)

    # charged leps from last W-
    gen_charged_leps_fromWminus = ak.flatten(last_gen_wminus.children[
        (np.abs(last_gen_wminus.children.pdgId) == 11) |
        (np.abs(last_gen_wminus.children.pdgId) == 13) |
        (np.abs(last_gen_wminus.children.pdgId) == 15)],
                                             axis=2)
    gen_charged_leps_fromWminus['charge'] = ak.ones_like(
        gen_charged_leps_fromWminus.pdgId) * (-1.)
    gen_wminus_decaytype[ak.num(gen_charged_leps_fromWminus) > 0] = np.ones(
        ak.sum(ak.num(gen_charged_leps_fromWminus) > 0))
    # add decaytype (0 is INVALID, 1 is LEPTONIC, 2 is HADRONIC)
    gen_wminus['decaytype'] = ak.unflatten(gen_wminus_decaytype,
                                           ak.num(gen_wminus))
    gen_tbars['decaytype'] = gen_wminus['decaytype']  # set decaytype for tbars
    gen_bbars['decaytype'] = gen_wminus['decaytype']  # set decaytype for bbars
    # neutral leps from last W-
    gen_neutral_leps_fromWminus = ak.flatten(last_gen_wminus.children[
        (np.abs(last_gen_wminus.children.pdgId) == 12) |
        (np.abs(last_gen_wminus.children.pdgId) == 14) |
        (np.abs(last_gen_wminus.children.pdgId) == 16)],
                                             axis=2)
    gen_neutral_leps_fromWminus['charge'] = ak.zeros_like(
        gen_neutral_leps_fromWminus.pt)

    gen_wpartons_up = ak.Array({}, with_name="PtEtaPhiMLorentzVector")
    gen_wpartons_dw = ak.Array({}, with_name="PtEtaPhiMLorentzVector")
    gen_charged_leps = ak.Array({}, with_name="PtEtaPhiMLorentzVector")
    gen_neutral_leps = ak.Array({}, with_name="PtEtaPhiMLorentzVector")
    for column in columns:
        if column == 'decaytype': continue
        gen_wpartons_up[column] = ak.flatten(
            ak.concatenate([
                gen_wpartons_up_fromWplus[column],
                gen_wpartons_up_fromWminus[column]
            ],
                           axis=1))  # (up-type partons from W+, W-)
        gen_wpartons_dw[column] = ak.flatten(
            ak.concatenate([
                gen_wpartons_dw_fromWplus[column],
                gen_wpartons_dw_fromWminus[column]
            ],
                           axis=1))  # (dw-type partons from W+, W-)
        gen_charged_leps[column] = ak.flatten(
            ak.concatenate([
                gen_charged_leps_fromWplus[column],
                gen_charged_leps_fromWminus[column]
            ],
                           axis=1))  # (charged leps from W+, W-)
        gen_neutral_leps[column] = ak.flatten(
            ak.concatenate([
                gen_neutral_leps_fromWplus[column],
                gen_neutral_leps_fromWminus[column]
            ],
                           axis=1))  # (neutral leps from W+, W-)

    gen_wpartons_up = ak.unflatten(
        gen_wpartons_up,
        ak.num(gen_wpartons_up_fromWplus) + ak.num(gen_wpartons_up_fromWminus))
    gen_wpartons_dw = ak.unflatten(
        gen_wpartons_dw,
        ak.num(gen_wpartons_dw_fromWplus) + ak.num(gen_wpartons_dw_fromWminus))
    gen_charged_leps = ak.unflatten(
        gen_charged_leps,
        ak.num(gen_charged_leps_fromWplus) +
        ak.num(gen_charged_leps_fromWminus))
    gen_neutral_leps = ak.unflatten(
        gen_neutral_leps,
        ak.num(gen_neutral_leps_fromWplus) +
        ak.num(gen_neutral_leps_fromWminus))
    gen_taus = gen_charged_leps[np.abs(gen_charged_leps.pdgId) == 15]
    gen_nu_taus = gen_neutral_leps[np.abs(gen_neutral_leps.pdgId) == 16]

    # fully hadronic evts
    had_evts = (ak.num(gen_charged_leps) == 0) & (
        ak.num(gen_neutral_leps)
        == 0) & (ak.num(gen_wpartons_up) == 2) & (ak.num(gen_wpartons_dw) == 2)

    #set_trace()
    # get direct tau decay products from hard processes (subset of gen_taus events above)
    tau_decay_prods = genparts[genparts.hasFlags(
        ['isDirectHardProcessTauDecayProduct'])]

    # only need decays to leptons (e/mu, tau nu) for event classification
    tau_TO_tau_nu = tau_decay_prods[np.abs(tau_decay_prods.pdgId) == 16]
    tau_TO_charged_lep = tau_decay_prods[(np.abs(tau_decay_prods.pdgId) == 11)
                                         |
                                         (np.abs(tau_decay_prods.pdgId) == 13)]
    tau_TO_neutral_lep = tau_decay_prods[(np.abs(tau_decay_prods.pdgId) == 12)
                                         |
                                         (np.abs(tau_decay_prods.pdgId) == 14)]

    # set decaytype for gen taus
    charged_lep_decaytype_array = ak.to_numpy(
        ak.flatten(ak.zeros_like(gen_charged_leps['pt'])))

    # semilep evts
    semilep_evts = (ak.num(gen_charged_leps) == 1) & (
        ak.num(gen_neutral_leps)
        == 1) & (ak.num(gen_wpartons_up) == 1) & (ak.num(gen_wpartons_dw) == 1)
    tau_jets_evts = semilep_evts & (ak.num(gen_taus) == 1)
    sl_evts_mask = np.repeat(ak.to_numpy(semilep_evts),
                             ak.to_numpy(ak.num(gen_charged_leps)))
    semilep_decaytype_array = np.zeros(ak.to_numpy(semilep_evts).sum(),
                                       dtype=int)
    # tau -> l
    semilep_tau_leptonic_decay = (tau_jets_evts) & (
        ak.num(tau_TO_charged_lep) == 1) & (
            ak.num(tau_TO_neutral_lep) == 1) & (ak.num(tau_TO_tau_nu) == 1)
    semilep_tau_hadronic_decay = (tau_jets_evts) & (
        ~semilep_tau_leptonic_decay)
    semilep_decaytype_array[
        semilep_tau_leptonic_decay[semilep_evts]] = np.ones(
            ak.to_numpy(semilep_tau_leptonic_decay).sum(), dtype=int)
    semilep_decaytype_array[
        semilep_tau_hadronic_decay[semilep_evts]] = np.ones(
            ak.to_numpy(semilep_tau_hadronic_decay).sum(), dtype=int) * 2

    # set charged_lep_decatype_array for semileptonic events
    charged_lep_decaytype_array[sl_evts_mask] = semilep_decaytype_array

    # dilep evts
    dilep_evts = (ak.num(gen_charged_leps) == 2) & (
        ak.num(gen_neutral_leps)
        == 2) & (ak.num(gen_wpartons_up) == 0) & (ak.num(gen_wpartons_dw) == 0)
    lep_lep_evts = dilep_evts & (ak.num(gen_taus) == 0)
    lep_tau_evts = dilep_evts & (ak.num(gen_taus) == 1)
    tau_tau_evts = dilep_evts & (ak.num(gen_taus) == 2)
    dl_evts_mask = np.repeat(ak.to_numpy(dilep_evts),
                             ak.to_numpy(ak.num(gen_charged_leps)))
    dilep_decaytype_array = np.zeros((ak.to_numpy(dilep_evts).sum(), 2),
                                     dtype=int)
    # tau + tau
    # tau + tau -> ll
    dilep_TauTau_ll_decay = (tau_tau_evts) & (
        ak.num(tau_TO_charged_lep) == 2) & (
            ak.num(tau_TO_neutral_lep) == 2) & (ak.num(tau_TO_tau_nu) == 2)
    dilep_decaytype_array[dilep_TauTau_ll_decay[dilep_evts]] = np.ones(
        (ak.to_numpy(dilep_TauTau_ll_decay).sum(), 2), dtype=int)
    # tau + tau -> hh
    dilep_TauTau_hh_decay = (tau_tau_evts) & (
        (ak.num(tau_TO_charged_lep) + ak.num(tau_TO_neutral_lep))
        == 0) & (ak.num(tau_TO_tau_nu) == 2)
    dilep_decaytype_array[dilep_TauTau_hh_decay[dilep_evts]] = np.ones(
        (ak.to_numpy(dilep_TauTau_hh_decay).sum(), 2), dtype=int) * 2
    # tau + tau -> lh
    dilep_TauTau_lh_decay = (
        tau_tau_evts) & ~(dilep_TauTau_ll_decay | dilep_TauTau_hh_decay)
    # set index corresponding to leptonically decaying tau to 1, default array is set to 2
    dl_TauTau_to_lh_decaytype_array = np.ones(
        ak.to_numpy(dilep_TauTau_lh_decay).sum() * 2, dtype=int) * 2
    lep_tau_mask = (np.repeat(
        ak.to_numpy(
            ak.flatten(
                tau_TO_charged_lep[dilep_TauTau_lh_decay].parent.pdgId)),
        2) == ak.flatten(gen_charged_leps[dilep_TauTau_lh_decay].pdgId))
    dl_TauTau_to_lh_decaytype_array[lep_tau_mask] = np.ones(lep_tau_mask.sum(),
                                                            dtype=int)
    dilep_decaytype_array[dilep_TauTau_lh_decay[
        dilep_evts]] = dl_TauTau_to_lh_decaytype_array.reshape(
            ak.to_numpy(dilep_TauTau_lh_decay).sum(), 2)

    # lep + tau
    # tau -> l
    dilep_LepTau_l_decay = (lep_tau_evts) & (
        ak.num(tau_TO_charged_lep) == 1) & (
            ak.num(tau_TO_neutral_lep) == 1) & (ak.num(tau_TO_tau_nu) == 1)
    # set index corresponding to tau to 1
    dl_LepTau_to_Lep_decaytype_array = np.zeros(
        ak.to_numpy(dilep_LepTau_l_decay).sum() * 2, dtype=int)
    dl_LepTau_to_Lep_decaytype_array[ak.flatten(
        np.abs(gen_charged_leps[dilep_LepTau_l_decay].pdgId) == 15)] = np.ones(
            ak.sum(dilep_LepTau_l_decay), dtype=int)
    dilep_decaytype_array[dilep_LepTau_l_decay[
        dilep_evts]] = dl_LepTau_to_Lep_decaytype_array.reshape(
            ak.sum(dilep_LepTau_l_decay), 2)
    # tau -> h
    dilep_LepTau_h_decay = (lep_tau_evts) & ~(dilep_LepTau_l_decay)
    # set index corresponding to tau to 2
    dl_LepTau_to_Had_decaytype_array = np.zeros(ak.sum(dilep_LepTau_h_decay) *
                                                2,
                                                dtype=int)
    dl_LepTau_to_Had_decaytype_array[ak.flatten(
        np.abs(gen_charged_leps[dilep_LepTau_h_decay].pdgId) == 15)] = np.ones(
            ak.sum(dilep_LepTau_h_decay), dtype=int) * 2
    dilep_decaytype_array[dilep_LepTau_h_decay[
        dilep_evts]] = dl_LepTau_to_Had_decaytype_array.reshape(
            ak.sum(dilep_LepTau_h_decay), 2)

    # set charged_lep_decatype_array for dileptonic events
    charged_lep_decaytype_array[dl_evts_mask] = dilep_decaytype_array.flatten()

    #  set charged lepton decaytype (defined for taus only, e/mu are 0) (1 is LEPTONIC, 2 is HADRONIC)
    gen_charged_leps['decaytype'] = ak.unflatten(charged_lep_decaytype_array,
                                                 ak.num(gen_charged_leps))

    # make awkward arrays of (top decay prods, tbar decay prods)
    Gen_Top_Pairs = ak.Array({}, with_name="PtEtaPhiMLorentzVector")
    Gen_B_Pairs = ak.Array({}, with_name="PtEtaPhiMLorentzVector")
    Gen_W_Pairs = ak.Array({}, with_name="PtEtaPhiMLorentzVector")
    Gen_Wparton_Pairs = ak.Array({}, with_name="PtEtaPhiMLorentzVector")
    for column in columns:
        Gen_Top_Pairs[column] = ak.flatten(
            ak.concatenate([gen_tops[column], gen_tbars[column]],
                           axis=1))  # (top, tbar)
        Gen_B_Pairs[column] = ak.flatten(
            ak.concatenate([gen_bs[column], gen_bbars[column]],
                           axis=1))  # (b, bbar)
        Gen_W_Pairs[column] = ak.flatten(
            ak.concatenate([gen_wplus[column], gen_wminus[column]],
                           axis=1))  # (W+, W-)
        if column is not "decaytype":
            Gen_Wparton_Pairs[column] = ak.flatten(
                ak.concatenate(
                    [
                        ak.pad_none(gen_wpartons_up[column], 1, axis=1),
                        ak.pad_none(gen_wpartons_dw[column], 1, axis=1)
                    ],
                    axis=1))  # (up-type wpartons, down-type wpartons)

    Gen_Top_Pairs = ak.unflatten(Gen_Top_Pairs,
                                 ak.num(gen_tops) + ak.num(gen_tbars))
    Gen_B_Pairs = ak.unflatten(Gen_B_Pairs, ak.num(gen_bs) + ak.num(gen_bbars))
    Gen_W_Pairs = ak.unflatten(Gen_W_Pairs,
                               ak.num(gen_wplus) + ak.num(gen_wminus))
    Gen_Wparton_Pairs = ak.unflatten(
        Gen_Wparton_Pairs,
        ak.num(ak.pad_none(gen_wpartons_up, 1, axis=1)) +
        ak.num(ak.pad_none(gen_wpartons_dw, 1, axis=1)))
    Gen_Wparton_Pairs = Gen_Wparton_Pairs[ak.argsort(
        Gen_Wparton_Pairs["pt"], ascending=False)]  # sort by pt

    Gen_TTbar = ak.Array(
        {
            "pt": (gen_tops + gen_tbars).pt,
            "eta": (gen_tops + gen_tbars).eta,
            "phi": (gen_tops + gen_tbars).phi,
            "mass": (gen_tops + gen_tbars).mass,
            "decaytype": gen_tops["decaytype"] + gen_tbars[
                "decaytype"],  # 0 is for INVALID, 2 for DILEP, 3 for SEMILEP, 4 for HADRONIC
        },
        with_name="PtEtaPhiMLorentzVector")

    ## make "table" of gen objects for certain decays
    ## DILEP
    DILEP_evts = ak.zip({
        "TTbar":
        Gen_TTbar[dilep_evts] if ak.any(dilep_evts) else ak.unflatten(
            Gen_TTbar[dilep_evts], ak.values_astype(dilep_evts, int)),
        "Top":
        Gen_Top_Pairs[np.sign(Gen_Top_Pairs.charge) == 1][dilep_evts]
        if ak.any(dilep_evts) else ak.unflatten(
            Gen_Top_Pairs[np.sign(Gen_Top_Pairs.charge) == 1][dilep_evts],
            ak.values_astype(dilep_evts, int)),
        "Tbar":
        Gen_Top_Pairs[np.sign(Gen_Top_Pairs.charge) == -1][dilep_evts]
        if ak.any(dilep_evts) else ak.unflatten(
            Gen_Top_Pairs[np.sign(Gen_Top_Pairs.charge) == -1][dilep_evts],
            ak.values_astype(dilep_evts, int)),
        "B":
        Gen_B_Pairs[np.sign(Gen_B_Pairs.charge) == -1][dilep_evts]
        if ak.any(dilep_evts) else ak.unflatten(
            Gen_B_Pairs[np.sign(Gen_B_Pairs.charge) == -1][dilep_evts],
            ak.values_astype(dilep_evts, int)),
        "Bbar":
        Gen_B_Pairs[np.sign(Gen_B_Pairs.charge) == 1][dilep_evts]
        if ak.any(dilep_evts) else ak.unflatten(
            Gen_B_Pairs[np.sign(Gen_B_Pairs.charge) == 1][dilep_evts],
            ak.values_astype(dilep_evts, int)),
        "Wplus":
        Gen_W_Pairs[Gen_W_Pairs.charge == 1][dilep_evts] if ak.any(dilep_evts)
        else ak.unflatten(Gen_W_Pairs[Gen_W_Pairs.charge == 1][dilep_evts],
                          ak.values_astype(dilep_evts, int)),
        "Wminus":
        Gen_W_Pairs[Gen_W_Pairs.charge == -1][dilep_evts] if ak.any(dilep_evts)
        else ak.unflatten(Gen_W_Pairs[Gen_W_Pairs.charge == -1][dilep_evts],
                          ak.values_astype(dilep_evts, int)),
        "First_plus":
        gen_charged_leps[gen_charged_leps.charge > 0][dilep_evts]
        if ak.any(dilep_evts) else ak.unflatten(
            gen_charged_leps[gen_charged_leps.charge > 0][dilep_evts],
            ak.values_astype(dilep_evts,
                             int)),  # charged lepton always made leading
        "Second_plus":
        gen_neutral_leps[gen_charged_leps.charge > 0][dilep_evts]
        if ak.any(dilep_evts) else ak.unflatten(
            gen_neutral_leps[gen_charged_leps.charge > 0][dilep_evts],
            ak.values_astype(dilep_evts,
                             int)),  # neutral lepton always made subleading
        "First_minus":
        gen_charged_leps[gen_charged_leps.charge < 0][dilep_evts]
        if ak.any(dilep_evts) else ak.unflatten(
            gen_charged_leps[gen_charged_leps.charge < 0][dilep_evts],
            ak.values_astype(dilep_evts,
                             int)),  # charged lepton always made leading
        "Second_minus":
        gen_neutral_leps[gen_charged_leps.charge < 0][dilep_evts]
        if ak.any(dilep_evts) else ak.unflatten(
            gen_neutral_leps[gen_charged_leps.charge < 0][dilep_evts],
            ak.values_astype(dilep_evts,
                             int)),  # neutral lepton always made subleading
        "Up_plus":
        gen_neutral_leps[gen_charged_leps.charge > 0][dilep_evts]
        if ak.any(dilep_evts) else ak.unflatten(
            gen_neutral_leps[gen_charged_leps.charge > 0][dilep_evts],
            ak.values_astype(dilep_evts, int)),  # same as second plus
        "Down_plus":
        gen_charged_leps[gen_charged_leps.charge > 0][dilep_evts]
        if ak.any(dilep_evts) else ak.unflatten(
            gen_charged_leps[gen_charged_leps.charge > 0][dilep_evts],
            ak.values_astype(dilep_evts, int)),  # same as first plus
        "Up_minus":
        gen_neutral_leps[gen_charged_leps.charge < 0][dilep_evts]
        if ak.any(dilep_evts) else ak.unflatten(
            gen_neutral_leps[gen_charged_leps.charge < 0][dilep_evts],
            ak.values_astype(dilep_evts, int)),  # same as second minus
        "Down_minus":
        gen_charged_leps[gen_charged_leps.charge < 0][dilep_evts]
        if ak.any(dilep_evts) else ak.unflatten(
            gen_charged_leps[gen_charged_leps.charge < 0][dilep_evts],
            ak.values_astype(dilep_evts, int)),  # same as first minus
    })

    ## HAD
    HAD_evts = ak.zip({
        "TTbar":
        Gen_TTbar[had_evts] if ak.any(had_evts) else ak.unflatten(
            Gen_TTbar[had_evts], ak.values_astype(had_evts, int)),
        "Top":
        Gen_Top_Pairs[np.sign(Gen_Top_Pairs.charge) == 1][had_evts]
        if ak.any(had_evts) else ak.unflatten(
            Gen_Top_Pairs[np.sign(Gen_Top_Pairs.charge) == 1][had_evts],
            ak.values_astype(had_evts, int)),
        "Tbar":
        Gen_Top_Pairs[np.sign(Gen_Top_Pairs.charge) == -1][had_evts]
        if ak.any(had_evts) else ak.unflatten(
            Gen_Top_Pairs[np.sign(Gen_Top_Pairs.charge) == -1][had_evts],
            ak.values_astype(had_evts, int)),
        "B":
        Gen_B_Pairs[np.sign(Gen_B_Pairs.charge) == -1][had_evts]
        if ak.any(had_evts) else ak.unflatten(
            Gen_B_Pairs[np.sign(Gen_B_Pairs.charge) == -1][had_evts],
            ak.values_astype(had_evts, int)),
        "Bbar":
        Gen_B_Pairs[np.sign(Gen_B_Pairs.charge) == 1][had_evts]
        if ak.any(had_evts) else ak.unflatten(
            Gen_B_Pairs[np.sign(Gen_B_Pairs.charge) == 1][had_evts],
            ak.values_astype(had_evts, int)),
        "Wplus":
        Gen_W_Pairs[Gen_W_Pairs.charge == 1][had_evts] if ak.any(had_evts) else
        ak.unflatten(Gen_W_Pairs[Gen_W_Pairs.charge == 1][had_evts],
                     ak.values_astype(had_evts, int)),
        "Wminus":
        Gen_W_Pairs[Gen_W_Pairs.charge == -1][had_evts] if ak.any(had_evts)
        else ak.unflatten(Gen_W_Pairs[Gen_W_Pairs.charge == -1][had_evts],
                          ak.values_astype(had_evts, int)),
        "First_plus":
        Gen_Wparton_Pairs[had_evts][Gen_Wparton_Pairs[had_evts].charge > 0][:,
                                                                            0]
        if ak.any(had_evts) else ak.unflatten(
            Gen_Wparton_Pairs[had_evts][Gen_Wparton_Pairs[had_evts].charge > 0]
            [:, 0], ak.values_astype(
                had_evts, int)),  # leading positively-charged parton
        "Second_plus":
        Gen_Wparton_Pairs[had_evts][Gen_Wparton_Pairs[had_evts].charge > 0][:,
                                                                            1]
        if ak.any(had_evts) else ak.unflatten(
            Gen_Wparton_Pairs[had_evts][Gen_Wparton_Pairs[had_evts].charge > 0]
            [:, 1], ak.values_astype(
                had_evts, int)),  # subleading positively-charged parton
        "First_minus":
        Gen_Wparton_Pairs[had_evts][Gen_Wparton_Pairs[had_evts].charge < 0][:,
                                                                            0]
        if ak.any(had_evts) else ak.unflatten(
            Gen_Wparton_Pairs[had_evts][Gen_Wparton_Pairs[had_evts].charge < 0]
            [:, 0], ak.values_astype(
                had_evts, int)),  # leading negatively-charged parton
        "Second_minus":
        Gen_Wparton_Pairs[had_evts][Gen_Wparton_Pairs[had_evts].charge < 0][:,
                                                                            1]
        if ak.any(had_evts) else ak.unflatten(
            Gen_Wparton_Pairs[had_evts][Gen_Wparton_Pairs[had_evts].charge < 0]
            [:, 1], ak.values_astype(
                had_evts, int)),  # subleading negatively-charged parton
        "Up_plus":
        gen_wpartons_up[gen_wpartons_up.charge > 0][had_evts]
        if ak.any(had_evts) else ak.unflatten(
            gen_wpartons_up[gen_wpartons_up.charge > 0][had_evts],
            ak.values_astype(had_evts,
                             int)),  # positively-charged up-type parton
        "Down_plus":
        gen_wpartons_dw[gen_wpartons_dw.charge > 0][had_evts]
        if ak.any(had_evts) else ak.unflatten(
            gen_wpartons_dw[gen_wpartons_dw.charge > 0][had_evts],
            ak.values_astype(had_evts,
                             int)),  # positively-charged down-type parton
        "Up_minus":
        gen_wpartons_up[gen_wpartons_up.charge < 0][had_evts]
        if ak.any(had_evts) else ak.unflatten(
            gen_wpartons_up[gen_wpartons_up.charge < 0][had_evts],
            ak.values_astype(had_evts,
                             int)),  # negatively-charged up-type parton
        "Down_minus":
        gen_wpartons_dw[gen_wpartons_dw.charge < 0][had_evts]
        if ak.any(had_evts) else ak.unflatten(
            gen_wpartons_dw[gen_wpartons_dw.charge < 0][had_evts],
            ak.values_astype(had_evts,
                             int)),  # negatively-charged down-type parton
    })

    ## SEMILEP
    SEMILEP_evts = ak.zip({
        "TTbar":
        Gen_TTbar[semilep_evts] if ak.any(semilep_evts) else ak.unflatten(
            Gen_TTbar[semilep_evts], ak.values_astype(semilep_evts, int)),
        "THad":
        Gen_Top_Pairs[Gen_Top_Pairs.decaytype == 2][semilep_evts]
        if ak.any(semilep_evts) else ak.unflatten(
            Gen_Top_Pairs[Gen_Top_Pairs.decaytype == 2][semilep_evts],
            ak.values_astype(semilep_evts, int)),
        "TLep":
        Gen_Top_Pairs[Gen_Top_Pairs.decaytype == 1][semilep_evts]
        if ak.any(semilep_evts) else ak.unflatten(
            Gen_Top_Pairs[Gen_Top_Pairs.decaytype == 1][semilep_evts],
            ak.values_astype(semilep_evts, int)),
        "BHad":
        Gen_B_Pairs[Gen_B_Pairs.decaytype == 2][semilep_evts]
        if ak.any(semilep_evts) else ak.unflatten(
            Gen_B_Pairs[Gen_B_Pairs.decaytype == 2][semilep_evts],
            ak.values_astype(semilep_evts, int)),
        "BLep":
        Gen_B_Pairs[Gen_B_Pairs.decaytype == 1][semilep_evts]
        if ak.any(semilep_evts) else ak.unflatten(
            Gen_B_Pairs[Gen_B_Pairs.decaytype == 1][semilep_evts],
            ak.values_astype(semilep_evts, int)),
        "WHad":
        Gen_W_Pairs[Gen_W_Pairs.decaytype == 2][semilep_evts]
        if ak.any(semilep_evts) else ak.unflatten(
            Gen_W_Pairs[Gen_W_Pairs.decaytype == 2][semilep_evts],
            ak.values_astype(semilep_evts, int)),
        "WLep":
        Gen_W_Pairs[Gen_W_Pairs.decaytype == 1][semilep_evts]
        if ak.any(semilep_evts) else ak.unflatten(
            Gen_W_Pairs[Gen_W_Pairs.decaytype == 1][semilep_evts],
            ak.values_astype(semilep_evts, int)),
        "Lepton":
        gen_charged_leps[semilep_evts] if ak.any(semilep_evts) else
        ak.unflatten(gen_charged_leps[semilep_evts],
                     ak.values_astype(semilep_evts, int)),
        "Nu":
        gen_neutral_leps[semilep_evts] if ak.any(semilep_evts) else
        ak.unflatten(gen_neutral_leps[semilep_evts],
                     ak.values_astype(semilep_evts, int)),
        "WJa":
        Gen_Wparton_Pairs[:, 0][semilep_evts] if ak.any(semilep_evts) else
        ak.unflatten(Gen_Wparton_Pairs[:, 0][semilep_evts],
                     ak.values_astype(semilep_evts, int)),
        "WJb":
        Gen_Wparton_Pairs[:, 1][semilep_evts] if ak.any(semilep_evts) else
        ak.unflatten(Gen_Wparton_Pairs[:, 1][semilep_evts],
                     ak.values_astype(semilep_evts, int)),
        "Up_Had":
        gen_wpartons_up[semilep_evts] if ak.any(semilep_evts) else
        ak.unflatten(gen_wpartons_up[semilep_evts],
                     ak.values_astype(semilep_evts, int)),
        "Down_Had":
        gen_wpartons_dw[semilep_evts] if ak.any(semilep_evts) else
        ak.unflatten(gen_wpartons_dw[semilep_evts],
                     ak.values_astype(semilep_evts, int)),
    })

    # make dictionary to return
    GenObjects = dict({
        "SL": SEMILEP_evts,
        "DL": DILEP_evts,
        "Had": HAD_evts,
    })

    return GenObjects
    def process(self, events):

        output = self.accumulator.identity()

        output['total']['all'] += len(events)
        # use a very loose preselection to filter the events
        presel = ak.num(events.Jet) > 2

        ev = events[presel]
        dataset = ev.metadata['dataset']

        # load the config - probably not needed anymore
        cfg = loadConfig()

        ## Muons
        muon = Collections(ev, "Muon", "vetoTTH").get()
        tightmuon = Collections(ev, "Muon", "tightTTH").get()
        dimuon = choose(muon, 2)
        SSmuon = ak.any((dimuon['0'].charge * dimuon['1'].charge) > 0, axis=1)
        leading_muon_idx = ak.singletons(ak.argmax(muon.pt, axis=1))
        leading_muon = muon[leading_muon_idx]

        ## Electrons
        electron = Collections(ev, "Electron", "vetoTTH").get()
        tightelectron = Collections(ev, "Electron", "tightTTH").get()
        dielectron = choose(electron, 2)
        SSelectron = ak.any(
            (dielectron['0'].charge * dielectron['1'].charge) > 0, axis=1)
        leading_electron_idx = ak.singletons(ak.argmax(electron.pt, axis=1))
        leading_electron = electron[leading_electron_idx]

        ## Merge electrons and muons - this should work better now in ak1
        dilepton = cross(muon, electron)
        SSlepton = ak.any((dilepton['0'].charge * dilepton['1'].charge) > 0,
                          axis=1)

        lepton = ak.concatenate([muon, electron], axis=1)
        leading_lepton_idx = ak.singletons(ak.argmax(lepton.pt, axis=1))
        leading_lepton = lepton[leading_lepton_idx]
        trailing_lepton_idx = ak.singletons(ak.argmin(lepton.pt, axis=1))
        trailing_lepton = lepton[trailing_lepton_idx]

        dilepton_mass = (leading_lepton + trailing_lepton).mass
        dilepton_pt = (leading_lepton + trailing_lepton).pt
        dilepton_dR = delta_r(leading_lepton, trailing_lepton)

        mt_lep_met = mt(lepton.pt, lepton.phi, ev.MET.pt, ev.MET.phi)
        min_mt_lep_met = ak.min(mt_lep_met, axis=1)

        ## Jets
        jet = getJets(ev, minPt=25, maxEta=4.7, pt_var='pt_nom')
        jet = jet[ak.argsort(
            jet.pt_nom, ascending=False
        )]  # need to sort wrt smeared and recorrected jet pt
        jet = jet[~match(jet, muon,
                         deltaRCut=0.4)]  # remove jets that overlap with muons
        jet = jet[~match(
            jet, electron,
            deltaRCut=0.4)]  # remove jets that overlap with electrons

        central = jet[(abs(jet.eta) < 2.4)]
        btag = getBTagsDeepFlavB(
            jet, year=self.year)  # should study working point for DeepJet
        light = getBTagsDeepFlavB(jet, year=self.year, invert=True)
        fwd = getFwdJet(light)
        fwd_noPU = getFwdJet(light, puId=False)

        tau = getTaus(ev)
        track = getIsoTracks(ev)
        ## forward jets
        j_fwd = fwd[ak.singletons(ak.argmax(
            fwd.p, axis=1))]  # highest momentum spectator

        high_score_btag = central[ak.argsort(central.btagDeepFlavB)][:, :2]

        bl = cross(lepton, high_score_btag)
        bl_dR = delta_r(bl['0'], bl['1'])
        min_bl_dR = ak.min(bl_dR, axis=1)

        jf = cross(j_fwd, jet)
        mjf = (jf['0'] + jf['1']).mass
        j_fwd2 = jf[ak.singletons(
            ak.argmax(mjf, axis=1)
        )]['1']  # this is the jet that forms the largest invariant mass with j_fwd
        delta_eta = ak.fill_none(
            ak.pad_none(abs(j_fwd2.eta - j_fwd.eta), 1, clip=True), 0)

        ## MET -> can switch to puppi MET
        met_pt = ev.MET.pt
        met_phi = ev.MET.phi

        ## other variables
        ht = ak.sum(jet.pt, axis=1)
        st = met_pt + ht + ak.sum(muon.pt, axis=1) + ak.sum(electron.pt,
                                                            axis=1)

        ## event selectors
        filters = getFilters(ev, year=self.year, dataset=dataset)

        dilep = ((ak.num(tightelectron) + ak.num(tightmuon)) == 2)
        lep0pt = ((ak.num(electron[(electron.pt > 25)]) +
                   ak.num(muon[(muon.pt > 25)])) > 0)
        lep1pt = ((ak.num(electron[(electron.pt > 20)]) +
                   ak.num(muon[(muon.pt > 20)])) > 1)
        lepveto = ((ak.num(electron) + ak.num(muon)) == 2)

        selection = PackedSelection()
        selection.add('lepveto', lepveto)
        selection.add('dilep', dilep)
        selection.add('filter', (filters))
        selection.add('p_T(lep0)>25', lep0pt)
        selection.add('p_T(lep1)>20', lep1pt)
        selection.add('SS', (SSlepton | SSelectron | SSmuon))
        selection.add('N_jet>3', (ak.num(jet) >= 4))
        selection.add('N_central>2', (ak.num(central) >= 3))
        selection.add('N_btag>0', (ak.num(btag) >= 1))
        selection.add('N_fwd>0', (ak.num(fwd) >= 1))

        #ss_reqs = ['lepveto', 'dilep', 'filter', 'p_T(lep0)>25', 'p_T(lep1)>20', 'SS']
        ss_reqs = [
            'lepveto', 'dilep', 'filter', 'p_T(lep0)>25', 'p_T(lep1)>20', 'SS'
        ]
        #bl_reqs = ss_reqs + ['N_jet>3', 'N_central>2', 'N_btag>0', 'N_fwd>0']
        bl_reqs = ss_reqs + ['N_jet>3', 'N_central>2', 'N_btag>0']

        ss_reqs_d = {sel: True for sel in ss_reqs}
        ss_selection = selection.require(**ss_reqs_d)
        bl_reqs_d = {sel: True for sel in bl_reqs}
        BL = selection.require(**bl_reqs_d)

        weight = Weights(len(ev))

        if not dataset == 'MuonEG':
            # lumi weight
            weight.add("weight", ev.weight)

            # PU weight - not in the babies...
            weight.add("PU",
                       ev.puWeight,
                       weightUp=ev.puWeightUp,
                       weightDown=ev.puWeightDown,
                       shift=False)

            # b-tag SFs
            weight.add("btag", self.btagSF.Method1a(btag, light))

            # lepton SFs
            weight.add("lepton", self.leptonSF.get(electron, muon))

        #cutflow     = Cutflow(output, ev, weight=weight)
        #cutflow_reqs_d = {}
        #for req in bl_reqs:
        #    cutflow_reqs_d.update({req: True})
        #    cutflow.addRow( req, selection.require(**cutflow_reqs_d) )

        labels = {
            'topW_v3': 0,
            'TTW': 1,
            'TTZ': 2,
            'TTH': 3,
            'ttbar': 4,
            'ttbar1l_MG': 4
        }
        if dataset in labels:
            label_mult = labels[dataset]
        else:
            label_mult = 5
        label = np.ones(len(ev[BL])) * label_mult

        output["n_lep"] += processor.column_accumulator(
            ak.to_numpy((ak.num(electron) + ak.num(muon))[BL]))
        output["n_lep_tight"] += processor.column_accumulator(
            ak.to_numpy((ak.num(tightelectron) + ak.num(tightmuon))[BL]))

        output["lead_lep_pt"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(leading_lepton[BL].pt, axis=1)))
        output["lead_lep_eta"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(leading_lepton[BL].eta, axis=1)))
        output["lead_lep_phi"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(leading_lepton[BL].phi, axis=1)))
        output["lead_lep_charge"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(leading_lepton[BL].charge, axis=1)))

        output["sublead_lep_pt"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(trailing_lepton[BL].pt, axis=1)))
        output["sublead_lep_eta"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(trailing_lepton[BL].eta, axis=1)))
        output["sublead_lep_phi"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(trailing_lepton[BL].phi, axis=1)))
        output["sublead_lep_charge"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(trailing_lepton[BL].charge, axis=1)))

        output["lead_jet_pt"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(jet[:, 0:1][BL].pt, axis=1)))
        output["lead_jet_eta"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(jet[:, 0:1][BL].eta, axis=1)))
        output["lead_jet_phi"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(jet[:, 0:1][BL].phi, axis=1)))

        output["sublead_jet_pt"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(jet[:, 1:2][BL].pt, axis=1)))
        output["sublead_jet_eta"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(jet[:, 1:2][BL].eta, axis=1)))
        output["sublead_jet_phi"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(jet[:, 1:2][BL].phi, axis=1)))

        output["lead_btag_pt"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(high_score_btag[:, 0:1][BL].pt, axis=1)))
        output["lead_btag_eta"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(high_score_btag[:, 0:1][BL].eta, axis=1)))
        output["lead_btag_phi"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(high_score_btag[:, 0:1][BL].phi, axis=1)))

        output["sublead_btag_pt"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(high_score_btag[:, 1:2][BL].pt, axis=1)))
        output["sublead_btag_eta"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(high_score_btag[:, 1:2][BL].eta, axis=1)))
        output["sublead_btag_phi"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(high_score_btag[:, 1:2][BL].phi, axis=1)))

        output["fwd_jet_p"] += processor.column_accumulator(
            ak.to_numpy(
                ak.flatten(ak.fill_none(ak.pad_none(j_fwd[BL].p, 1, clip=True),
                                        0),
                           axis=1)))
        output["fwd_jet_pt"] += processor.column_accumulator(
            ak.to_numpy(
                ak.flatten(ak.fill_none(
                    ak.pad_none(j_fwd[BL].pt, 1, clip=True), 0),
                           axis=1)))
        output["fwd_jet_eta"] += processor.column_accumulator(
            ak.to_numpy(
                ak.flatten(ak.fill_none(
                    ak.pad_none(j_fwd[BL].eta, 1, clip=True), 0),
                           axis=1)))
        output["fwd_jet_phi"] += processor.column_accumulator(
            ak.to_numpy(
                ak.flatten(ak.fill_none(
                    ak.pad_none(j_fwd[BL].phi, 1, clip=True), 0),
                           axis=1)))

        output["mjj_max"] += processor.column_accumulator(
            ak.to_numpy(ak.fill_none(ak.max(mjf[BL], axis=1), 0)))
        output["delta_eta_jj"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(delta_eta[BL], axis=1)))

        output["met"] += processor.column_accumulator(ak.to_numpy(met_pt[BL]))
        output["ht"] += processor.column_accumulator(ak.to_numpy(ht[BL]))
        output["st"] += processor.column_accumulator(ak.to_numpy(st[BL]))
        output["n_jet"] += processor.column_accumulator(
            ak.to_numpy(ak.num(jet[BL])))
        output["n_btag"] += processor.column_accumulator(
            ak.to_numpy(ak.num(btag[BL])))
        output["n_fwd"] += processor.column_accumulator(
            ak.to_numpy(ak.num(fwd[BL])))
        output["n_central"] += processor.column_accumulator(
            ak.to_numpy(ak.num(central[BL])))
        output["n_tau"] += processor.column_accumulator(
            ak.to_numpy(ak.num(tau[BL])))
        output["n_track"] += processor.column_accumulator(
            ak.to_numpy(ak.num(track[BL])))

        output["dilepton_pt"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(dilepton_pt[BL], axis=1)))
        output["dilepton_mass"] += processor.column_accumulator(
            ak.to_numpy(ak.flatten(dilepton_mass[BL], axis=1)))
        output["min_bl_dR"] += processor.column_accumulator(
            ak.to_numpy(min_bl_dR[BL]))
        output["min_mt_lep_met"] += processor.column_accumulator(
            ak.to_numpy(min_mt_lep_met[BL]))

        output["label"] += processor.column_accumulator(label)
        output["weight"] += processor.column_accumulator(weight.weight()[BL])

        output["presel"]["all"] += len(ev[ss_selection])
        output["sel"]["all"] += len(ev[BL])

        return output
Ejemplo n.º 27
0
        def sort_by_pt(ele, pho, jet):
            ele = ele[ak.argsort(ele.pt, ascending=False, axis=1)]
            pho = pho[ak.argsort(pho.pt, ascending=False, axis=1)]
            jet = jet[ak.argsort(jet.pt, ascending=False, axis=1)]

            return ele, pho, jet
Ejemplo n.º 28
0
    def get(self, ele, mu, variation='central'):
        multiplier = {'central': 0, 'up': 1, 'down': -1}

        from Tools.helpers import pad_and_flatten
        from Tools.objects import cross, choose
        import numpy as np
        # get a lepton collection
        lep = ak.concatenate([mu, ele], axis=1)
        # now sort them
        lep = lep[ak.argsort(lep.pt, ascending=False)]
        l0_is_ele = (abs(pad_and_flatten(lep[:, 0:1].pdgId)) == 11)
        l1_is_ele = (abs(pad_and_flatten(lep[:, 1:2].pdgId)) == 11)

        if self.year == 2016:

            ee_sf = self.evaluator["ee_2016"](pad_and_flatten(ele[:, 0:1].pt),
                                              pad_and_flatten(ele[:, 1:2].pt))
            ee_sf = ee_sf + multiplier[variation] * self.evaluator[
                "ee_2016_error"](pad_and_flatten(ele[:, 0:1].pt),
                                 pad_and_flatten(ele[:, 1:2].pt))

            emu_sf = self.evaluator["emu_2016"](pad_and_flatten(mu[:, 0:1].pt),
                                                pad_and_flatten(ele[:,
                                                                    1:2].pt))
            emu_sf = emu_sf + multiplier[variation] * self.evaluator[
                "emu_2016_error"](pad_and_flatten(mu[:, 0:1].pt),
                                  pad_and_flatten(ele[:, 1:2].pt))

            mumu_sf = self.evaluator["mumu_2016"](pad_and_flatten(mu[:,
                                                                     0:1].pt),
                                                  pad_and_flatten(mu[:,
                                                                     1:2].pt))
            mumu_sf = mumu_sf + multiplier[variation] * self.evaluator[
                "mumu_2016_error"](pad_and_flatten(mu[:, 0:1].pt),
                                   pad_and_flatten(mu[:, 1:2].pt))

        elif self.year == 2017:

            ee_sf = self.evaluator["ee_2017"](pad_and_flatten(ele[:, 0:1].pt),
                                              pad_and_flatten(ele[:, 1:2].pt))
            ee_sf = ee_sf + multiplier[variation] * self.evaluator[
                "ee_2017_error"](pad_and_flatten(ele[:, 0:1].pt),
                                 pad_and_flatten(ele[:, 1:2].pt))

            emu_sf = self.evaluator["emu_2017"](pad_and_flatten(mu[:, 0:1].pt),
                                                pad_and_flatten(ele[:,
                                                                    1:2].pt))
            emu_sf = emu_sf + multiplier[variation] * self.evaluator[
                "emu_2017_error"](pad_and_flatten(mu[:, 0:1].pt),
                                  pad_and_flatten(ele[:, 1:2].pt))

            mumu_sf = self.evaluator["mumu_2017"](pad_and_flatten(mu[:,
                                                                     0:1].pt),
                                                  pad_and_flatten(mu[:,
                                                                     1:2].pt))
            mumu_sf = mumu_sf + multiplier[variation] * self.evaluator[
                "mumu_2017_error"](pad_and_flatten(mu[:, 0:1].pt),
                                   pad_and_flatten(mu[:, 1:2].pt))

        elif self.year == 2018:

            ee_sf = self.evaluator["ee_2018"](pad_and_flatten(ele[:, 0:1].pt),
                                              pad_and_flatten(ele[:, 1:2].pt))
            ee_sf = ee_sf + multiplier[variation] * self.evaluator[
                "ee_2018_error"](pad_and_flatten(ele[:, 0:1].pt),
                                 pad_and_flatten(ele[:, 1:2].pt))

            emu_sf = self.evaluator["emu_2018"](pad_and_flatten(mu[:, 0:1].pt),
                                                pad_and_flatten(ele[:,
                                                                    1:2].pt))
            emu_sf = emu_sf + multiplier[variation] * self.evaluator[
                "emu_2018_error"](pad_and_flatten(mu[:, 0:1].pt),
                                  pad_and_flatten(ele[:, 1:2].pt))

            mumu_sf = self.evaluator["mumu_2018"](pad_and_flatten(mu[:,
                                                                     0:1].pt),
                                                  pad_and_flatten(mu[:,
                                                                     1:2].pt))
            mumu_sf = mumu_sf + multiplier[variation] * self.evaluator[
                "mumu_2018_error"](pad_and_flatten(mu[:, 0:1].pt),
                                   pad_and_flatten(mu[:, 1:2].pt))

        sf = (ee_sf * (l0_is_ele & l1_is_ele)) + (
            emu_sf * (l0_is_ele ^ l1_is_ele)) + (mumu_sf *
                                                 (~l0_is_ele & ~l1_is_ele))
        #ee_mm_em = ak.concatenate([choose(ele), choose(mu), cross(mu, ele)], axis=1)
        #sf = (pad_and_flatten(sf*(ee_mm_em.pt/ee_mm_em.pt)))
        #sf = (sf/sf)*sf
        #sf = (np.where(np.isnan(sf), 1, sf))

        return sf
Ejemplo n.º 29
0
    def process(self, events):

        output = self.accumulator.identity()

        # use a very loose preselection to filter the events
        presel = ak.num(events.Jet) > 2

        ev = events[presel]
        dataset = ev.metadata['dataset']

        # load the config - probably not needed anymore
        cfg = loadConfig()

        output['totalEvents']['all'] += len(events)
        output['skimmedEvents']['all'] += len(ev)

        ## Generated leptons
        '''gen_lep = ev.GenL
        leading_gen_lep = gen_lep[ak.singletons(ak.argmax(gen_lep.pt, axis=1))]
        trailing_gen_lep = gen_lep[ak.singletons(ak.argmin(gen_lep.pt, axis=1))]'''

        ## Muons

        muon = Collections(ev, "Muon", "tightTTH").get()
        vetomuon = Collections(ev, "Muon", "vetoTTH").get()
        leading_muon_idx = ak.singletons(ak.argmax(muon.pt, axis=1))
        leading_muon = muon[leading_muon_idx]

        ## Electrons
        electron = Collections(ev, "Electron", "tightTTH").get()
        vetoelectron = Collections(ev, "Electron", "vetoTTH").get()
        leading_electron_idx = ak.singletons(ak.argmax(electron.pt, axis=1))
        leading_electron = electron[leading_electron_idx]

        ## Merge electrons and muons - this should work better now in ak1
        dilepton = cross(muon, electron)

        dimuon = choose(muon, 2)
        OS_dimuon = dimuon[(dimuon['0'].charge * dimuon['1'].charge < 0)]

        dielectron = choose(electron, 2)
        OS_dielectron = dielectron[(
            dielectron['0'].charge * dielectron['1'].charge < 0)]

        OS_dimuon_bestZmumu = OS_dimuon[ak.singletons(
            ak.argmin(abs(OS_dimuon.mass - 91.2), axis=1))]
        OS_dielectron_bestZee = OS_dielectron[ak.singletons(
            ak.argmin(abs(OS_dielectron.mass - 91.2), axis=1))]
        OS_dilepton_mass = ak.fill_none(
            ak.pad_none(ak.concatenate(
                [OS_dimuon_bestZmumu.mass, OS_dielectron_bestZee.mass],
                axis=1),
                        1,
                        clip=True), -1)

        lepton = ak.concatenate([muon, electron], axis=1)
        leading_lepton_idx = ak.singletons(ak.argmax(lepton.pt, axis=1))
        leading_lepton = lepton[leading_lepton_idx]
        trailing_lepton_idx = ak.singletons(ak.argmin(lepton.pt, axis=1))
        trailing_lepton = lepton[trailing_lepton_idx]

        ## Jets
        jet = getJets(ev, minPt=25, maxEta=4.7, pt_var='pt_nom')
        jet = jet[ak.argsort(
            jet.pt_nom, ascending=False
        )]  # need to sort wrt smeared and recorrected jet pt
        jet = jet[~match(jet, muon,
                         deltaRCut=0.4)]  # remove jets that overlap with muons
        jet = jet[~match(
            jet, electron,
            deltaRCut=0.4)]  # remove jets that overlap with electrons

        central = jet[(abs(jet.eta) < 2.4)]
        btag = getBTagsDeepFlavB(
            jet, year=self.year)  # should study working point for DeepJet
        light = getBTagsDeepFlavB(jet, year=self.year, invert=True)
        fwd = getFwdJet(light)
        fwd_noPU = getFwdJet(light, puId=False)

        ## forward jets
        j_fwd = fwd[ak.singletons(ak.argmax(
            fwd.p, axis=1))]  # highest momentum spectator

        jf = cross(j_fwd, jet)
        mjf = (jf['0'] + jf['1']).mass
        #        j_fwd2      = jf[ak.singletons(ak.argmax(mjf, axis=1))]['1'] # this is the jet that forms the largest invariant mass with j_fwd
        #        delta_eta   = abs(j_fwd2.eta - j_fwd.eta)

        ## MET -> can switch to puppi MET
        met_pt = ev.MET.pt
        met_phi = ev.MET.phi

        ## other variables
        ht = ak.sum(jet.pt, axis=1)
        st = met_pt + ht + ak.sum(muon.pt, axis=1) + ak.sum(electron.pt,
                                                            axis=1)

        # define the weight
        weight = Weights(len(ev))

        if not re.search(re.compile('MuonEG|DoubleMuon|DoubleEG|EGamma'),
                         dataset):
            # lumi weight
            weight.add("weight", ev.weight * cfg['lumi'][self.year])

            # PU weight - not in the babies...
            weight.add("PU",
                       ev.puWeight,
                       weightUp=ev.puWeightUp,
                       weightDown=ev.puWeightDown,
                       shift=False)

            # b-tag SFs
            weight.add("btag", self.btagSF.Method1a(btag, light))

        #  lepton SFs
        #  weight.add("lepton", self.leptonSF.get(electron, muon))

        cutflow = Cutflow(output, ev, weight=weight)

        sel = Selection(
            dataset=dataset,
            events=ev,
            year=self.year,
            ele=electron,
            ele_veto=vetoelectron,
            mu=muon,
            mu_veto=vetomuon,
            jet_all=jet,
            jet_central=central,
            jet_btag=btag,
            jet_fwd=fwd,
            met=ev.MET,
        )

        BL = sel.trilep_baseline(cutflow=cutflow)

        # first, make a few super inclusive plots
        output['ST'].fill(dataset=dataset,
                          ht=st[BL],
                          weight=weight.weight()[BL])

        output['PV_npvs'].fill(dataset=dataset,
                               multiplicity=ev.PV[BL].npvs,
                               weight=weight.weight()[BL])
        output['PV_npvsGood'].fill(dataset=dataset,
                                   multiplicity=ev.PV[BL].npvsGood,
                                   weight=weight.weight()[BL])
        output['N_jet'].fill(dataset=dataset,
                             multiplicity=ak.num(jet)[BL],
                             weight=weight.weight()[BL])
        output['N_b'].fill(dataset=dataset,
                           multiplicity=ak.num(btag)[BL],
                           weight=weight.weight()[BL])
        output['N_central'].fill(dataset=dataset,
                                 multiplicity=ak.num(central)[BL],
                                 weight=weight.weight()[BL])
        output['N_ele'].fill(dataset=dataset,
                             multiplicity=ak.num(vetoelectron)[BL],
                             weight=weight.weight()[BL])
        output['N_mu'].fill(dataset=dataset,
                            multiplicity=ak.num(vetomuon)[BL],
                            weight=weight.weight()[BL])
        output['N_fwd'].fill(dataset=dataset,
                             multiplicity=ak.num(fwd)[BL],
                             weight=weight.weight()[BL])
        '''output['nLepFromTop'].fill(dataset=dataset, multiplicity=ev[BL].nLepFromTop, weight=weight.weight()[BL])
        output['nLepFromTau'].fill(dataset=dataset, multiplicity=ev.nLepFromTau[BL], weight=weight.weight()[BL])
        output['nLepFromZ'].fill(dataset=dataset, multiplicity=ev.nLepFromZ[BL], weight=weight.weight()[BL])
        output['nLepFromW'].fill(dataset=dataset, multiplicity=ev.nLepFromW[BL], weight=weight.weight()[BL])
        output['nGenTau'].fill(dataset=dataset, multiplicity=ev.nGenTau[BL], weight=weight.weight()[BL])
        output['nGenL'].fill(dataset=dataset, multiplicity=ak.num(ev.GenL[BL], axis=1), weight=weight.weight()[BL])'''

        # make a plot of the dilepton mass, but without applying the cut on the dilepton mass itself (N-1 plot)
        output['dilep_mass'].fill(
            dataset=dataset,
            mass=ak.flatten(
                OS_dilepton_mass[sel.trilep_baseline(omit=['offZ'])]),
            weight=weight.weight()[sel.trilep_baseline(omit=['offZ'])])

        output['MET'].fill(dataset=dataset,
                           pt=ev.MET[BL].pt,
                           phi=ev.MET[BL].phi,
                           weight=weight.weight()[BL])
        '''output['lead_gen_lep'].fill(
            dataset = dataset,
            pt  = ak.to_numpy(ak.flatten(leading_gen_lep[BL].pt)),
            eta = ak.to_numpy(ak.flatten(leading_gen_lep[BL].eta)),
            phi = ak.to_numpy(ak.flatten(leading_gen_lep[BL].phi)),
            weight = weight.weight()[BL]
        )

        output['trail_gen_lep'].fill(
            dataset = dataset,
            pt  = ak.to_numpy(ak.flatten(trailing_gen_lep[BL].pt)),
            eta = ak.to_numpy(ak.flatten(trailing_gen_lep[BL].eta)),
            phi = ak.to_numpy(ak.flatten(trailing_gen_lep[BL].phi)),
            weight = weight.weight()[BL]
        )'''

        output['lead_lep'].fill(
            dataset=dataset,
            pt=ak.to_numpy(ak.flatten(leading_lepton[BL].pt)),
            eta=ak.to_numpy(ak.flatten(leading_lepton[BL].eta)),
            phi=ak.to_numpy(ak.flatten(leading_lepton[BL].phi)),
            weight=weight.weight()[BL])

        output['trail_lep'].fill(
            dataset=dataset,
            pt=ak.to_numpy(ak.flatten(trailing_lepton[BL].pt)),
            eta=ak.to_numpy(ak.flatten(trailing_lepton[BL].eta)),
            phi=ak.to_numpy(ak.flatten(trailing_lepton[BL].phi)),
            weight=weight.weight()[BL])

        output['j1'].fill(dataset=dataset,
                          pt=ak.flatten(jet.pt_nom[:, 0:1][BL]),
                          eta=ak.flatten(jet.eta[:, 0:1][BL]),
                          phi=ak.flatten(jet.phi[:, 0:1][BL]),
                          weight=weight.weight()[BL])

        output['j2'].fill(dataset=dataset,
                          pt=ak.flatten(jet[:, 1:2][BL].pt_nom),
                          eta=ak.flatten(jet[:, 1:2][BL].eta),
                          phi=ak.flatten(jet[:, 1:2][BL].phi),
                          weight=weight.weight()[BL])

        #output['j3'].fill(
        #    dataset = dataset,
        #    pt  = ak.flatten(jet[:, 2:3][BL].pt_nom),
        #    eta = ak.flatten(jet[:, 2:3][BL].eta),
        #    phi = ak.flatten(jet[:, 2:3][BL].phi),
        #    weight = weight.weight()[BL]
        #)

        output['fwd_jet'].fill(dataset=dataset,
                               pt=ak.flatten(j_fwd[BL].pt),
                               eta=ak.flatten(j_fwd[BL].eta),
                               phi=ak.flatten(j_fwd[BL].phi),
                               weight=weight.weight()[BL])

        output['high_p_fwd_p'].fill(dataset=dataset,
                                    p=ak.flatten(j_fwd[BL].p),
                                    weight=weight.weight()[BL])

        vetolepton = ak.concatenate([vetomuon, vetoelectron], axis=1)
        trilep = choose3(vetolepton, 3)
        trilep_m = trilep.mass
        output['m3l'].fill(dataset=dataset,
                           mass=ak.flatten(trilep_m[BL]),
                           weight=weight.weight()[BL])

        return output
Ejemplo n.º 30
0
    def process(self, events):
        # Dataset parameters
        dataset = events.metadata['dataset']
        histAxisName = self._samples[dataset]['histAxisName']
        year = self._samples[dataset]['year']
        xsec = self._samples[dataset]['xsec']
        sow = self._samples[dataset]['nSumOfWeights']
        isData = self._samples[dataset]['isData']
        datasets = [
            'SingleMuon', 'SingleElectron', 'EGamma', 'MuonEG', 'DoubleMuon',
            'DoubleElectron'
        ]
        for d in datasets:
            if d in dataset: dataset = dataset.split('_')[0]

        # Initialize objects
        met = events.MET
        e = events.Electron
        mu = events.Muon
        tau = events.Tau
        j = events.Jet

        # Muon selection

        mu['isPres'] = isPresMuon(mu.dxy, mu.dz, mu.sip3d, mu.looseId)
        mu['isTight'] = isTightMuon(mu.pt,
                                    mu.eta,
                                    mu.dxy,
                                    mu.dz,
                                    mu.pfRelIso03_all,
                                    mu.sip3d,
                                    mu.mvaTTH,
                                    mu.mediumPromptId,
                                    mu.tightCharge,
                                    mu.looseId,
                                    minpt=10)
        mu['isGood'] = mu['isPres'] & mu['isTight']

        leading_mu = mu[ak.argmax(mu.pt, axis=-1, keepdims=True)]
        leading_mu = leading_mu[leading_mu.isGood]

        mu = mu[mu.isGood]
        mu_pres = mu[mu.isPres]

        # Electron selection
        e['isPres'] = isPresElec(e.pt,
                                 e.eta,
                                 e.dxy,
                                 e.dz,
                                 e.miniPFRelIso_all,
                                 e.sip3d,
                                 e.lostHits,
                                 minpt=15)
        e['isTight'] = isTightElec(e.pt,
                                   e.eta,
                                   e.dxy,
                                   e.dz,
                                   e.miniPFRelIso_all,
                                   e.sip3d,
                                   e.mvaTTH,
                                   e.mvaFall17V2Iso,
                                   e.lostHits,
                                   e.convVeto,
                                   e.tightCharge,
                                   e.sieie,
                                   e.hoe,
                                   e.eInvMinusPInv,
                                   minpt=15)
        e['isClean'] = isClean(e, mu, drmin=0.05)
        e['isGood'] = e['isPres'] & e['isTight'] & e['isClean']

        leading_e = e[ak.argmax(e.pt, axis=-1, keepdims=True)]
        leading_e = leading_e[leading_e.isGood]

        e = e[e.isGood]
        e_pres = e[e.isPres & e.isClean]

        # Tau selection
        tau['isPres'] = isPresTau(tau.pt,
                                  tau.eta,
                                  tau.dxy,
                                  tau.dz,
                                  tau.leadTkPtOverTauPt,
                                  tau.idAntiMu,
                                  tau.idAntiEle,
                                  tau.rawIso,
                                  tau.idDecayModeNewDMs,
                                  minpt=20)
        tau['isClean'] = isClean(tau, e_pres, drmin=0.4) & isClean(
            tau, mu_pres, drmin=0.4)
        tau['isGood'] = tau['isPres']  # & tau['isClean'], for the moment
        tau = tau[tau.isGood]

        nElec = ak.num(e)
        nMuon = ak.num(mu)
        nTau = ak.num(tau)

        twoLeps = (nElec + nMuon) == 2
        threeLeps = (nElec + nMuon) == 3
        twoElec = (nElec == 2)
        twoMuon = (nMuon == 2)
        e0 = e[ak.argmax(e.pt, axis=-1, keepdims=True)]
        m0 = mu[ak.argmax(mu.pt, axis=-1, keepdims=True)]

        # Attach the lepton SFs to the electron and muons collections
        AttachElectronSF(e, year=year)
        AttachMuonSF(mu, year=year)

        # Create a lepton (muon+electron) collection and calculate a per event lepton SF
        leps = ak.concatenate([e, mu], axis=-1)
        events['lepSF_nom'] = ak.prod(leps.sf_nom, axis=-1)
        events['lepSF_hi'] = ak.prod(leps.sf_hi, axis=-1)
        events['lepSF_lo'] = ak.prod(leps.sf_lo, axis=-1)

        # Jet selection
        jetptname = 'pt_nom' if hasattr(j, 'pt_nom') else 'pt'

        ### Jet energy corrections
        if not isData:
            j["pt_raw"] = (1 - j.rawFactor) * j.pt
            j["mass_raw"] = (1 - j.rawFactor) * j.mass
            j["pt_gen"] = ak.values_astype(ak.fill_none(j.matched_gen.pt, 0),
                                           np.float32)
            j["rho"] = ak.broadcast_arrays(events.fixedGridRhoFastjetAll,
                                           j.pt)[0]
            events_cache = events.caches[0]
            corrected_jets = jet_factory.build(j, lazy_cache=events_cache)
            #print('jet pt: ',j.pt)
            #print('cor pt: ',corrected_jets.pt)
            #print('jes up: ',corrected_jets.JES_jes.up.pt)
            #print('jes down: ',corrected_jets.JES_jes.down.pt)
            #print(ak.fields(corrected_jets))
            '''
          # SYSTEMATICS
          jets = corrected_jets
          if(self.jetSyst == 'JERUp'):
            jets = corrected_jets.JER.up
          elif(self.jetSyst == 'JERDown'):
            jets = corrected_jets.JER.down
          elif(self.jetSyst == 'JESUp'):
            jets = corrected_jets.JES_jes.up
          elif(self.jetSyst == 'JESDown'):
            jets = corrected_jets.JES_jes.down
          '''
        j['isGood'] = isTightJet(getattr(j,
                                         jetptname), j.eta, j.jetId, j.neHEF,
                                 j.neEmEF, j.chHEF, j.chEmEF, j.nConstituents)
        #j['isgood']  = isGoodJet(j.pt, j.eta, j.jetId)
        #j['isclean'] = isClean(j, e, mu)
        j['isClean'] = isClean(j, e, drmin=0.4) & isClean(
            j, mu, drmin=0.4)  # & isClean(j, tau, drmin=0.4)
        goodJets = j[(j.isClean) & (j.isGood)]
        njets = ak.num(goodJets)
        ht = ak.sum(goodJets.pt, axis=-1)
        j0 = goodJets[ak.argmax(goodJets.pt, axis=-1, keepdims=True)]
        #nbtags = ak.num(goodJets[goodJets.btagDeepFlavB > 0.2770])
        # Loose DeepJet WP
        if year == 2017: btagwpl = 0.0532  #WP loose
        else: btagwpl = 0.0490  #WP loose
        isBtagJetsLoose = (goodJets.btagDeepB > btagwpl)
        isNotBtagJetsLoose = np.invert(isBtagJetsLoose)
        nbtagsl = ak.num(goodJets[isBtagJetsLoose])
        # Medium DeepJet WP
        if year == 2017: btagwpm = 0.3040  #WP medium
        else: btagwpm = 0.2783  #WP medium
        isBtagJetsMedium = (goodJets.btagDeepB > btagwpm)
        isNotBtagJetsMedium = np.invert(isBtagJetsMedium)
        nbtagsm = ak.num(goodJets[isBtagJetsMedium])

        # Btag SF following 1a) in https://twiki.cern.ch/twiki/bin/viewauth/CMS/BTagSFMethods
        btagSF = np.ones_like(ht)
        btagSFUp = np.ones_like(ht)
        btagSFDo = np.ones_like(ht)
        if not isData:
            pt = goodJets.pt
            abseta = np.abs(goodJets.eta)
            flav = goodJets.hadronFlavour
            bJetSF = GetBTagSF(abseta, pt, flav)
            bJetSFUp = GetBTagSF(abseta, pt, flav, sys=1)
            bJetSFDo = GetBTagSF(abseta, pt, flav, sys=-1)
            bJetEff = GetBtagEff(abseta, pt, flav, year)
            bJetEff_data = bJetEff * bJetSF
            bJetEff_dataUp = bJetEff * bJetSFUp
            bJetEff_dataDo = bJetEff * bJetSFDo

            pMC = ak.prod(bJetEff[isBtagJetsMedium], axis=-1) * ak.prod(
                (1 - bJetEff[isNotBtagJetsMedium]), axis=-1)
            pData = ak.prod(bJetEff_data[isBtagJetsMedium], axis=-1) * ak.prod(
                (1 - bJetEff_data[isNotBtagJetsMedium]), axis=-1)
            pDataUp = ak.prod(
                bJetEff_dataUp[isBtagJetsMedium], axis=-1) * ak.prod(
                    (1 - bJetEff_dataUp[isNotBtagJetsMedium]), axis=-1)
            pDataDo = ak.prod(
                bJetEff_dataDo[isBtagJetsMedium], axis=-1) * ak.prod(
                    (1 - bJetEff_dataDo[isNotBtagJetsMedium]), axis=-1)

            pMC = ak.where(pMC == 0, 1,
                           pMC)  # removeing zeroes from denominator...
            btagSF = pData / pMC
            btagSFUp = pDataUp / pMC
            btagSFDo = pDataUp / pMC

        ##################################################################
        ### 2 same-sign leptons
        ##################################################################

        # emu
        singe = e[(nElec == 1) & (nMuon == 1) & (e.pt > -1)]
        singm = mu[(nElec == 1) & (nMuon == 1) & (mu.pt > -1)]
        em = ak.cartesian({"e": singe, "m": singm})
        emSSmask = (em.e.charge * em.m.charge > 0)
        emSS = em[emSSmask]
        nemSS = len(ak.flatten(emSS))

        # ee and mumu
        # pt>-1 to preserve jagged dimensions
        ee = e[(nElec == 2) & (nMuon == 0) & (e.pt > -1)]
        mm = mu[(nElec == 0) & (nMuon == 2) & (mu.pt > -1)]

        sumcharge = ak.sum(e.charge, axis=-1) + ak.sum(mu.charge, axis=-1)

        eepairs = ak.combinations(ee, 2, fields=["e0", "e1"])
        eeSSmask = (eepairs.e0.charge * eepairs.e1.charge > 0)
        eeonZmask = (np.abs((eepairs.e0 + eepairs.e1).mass - 91.2) < 10)
        eeoffZmask = (eeonZmask == 0)

        mmpairs = ak.combinations(mm, 2, fields=["m0", "m1"])
        mmSSmask = (mmpairs.m0.charge * mmpairs.m1.charge > 0)
        mmonZmask = (np.abs((mmpairs.m0 + mmpairs.m1).mass - 91.2) < 10)
        mmoffZmask = (mmonZmask == 0)

        eeSSonZ = eepairs[eeSSmask & eeonZmask]
        eeSSoffZ = eepairs[eeSSmask & eeoffZmask]
        mmSSonZ = mmpairs[mmSSmask & mmonZmask]
        mmSSoffZ = mmpairs[mmSSmask & mmoffZmask]
        neeSS = len(ak.flatten(eeSSonZ)) + len(ak.flatten(eeSSoffZ))
        nmmSS = len(ak.flatten(mmSSonZ)) + len(ak.flatten(mmSSoffZ))

        print('Same-sign events [ee, emu, mumu] = [%i, %i, %i]' %
              (neeSS, nemSS, nmmSS))

        # Cuts
        eeSSmask = (ak.num(eeSSmask[eeSSmask]) > 0)
        mmSSmask = (ak.num(mmSSmask[mmSSmask]) > 0)
        eeonZmask = (ak.num(eeonZmask[eeonZmask]) > 0)
        eeoffZmask = (ak.num(eeoffZmask[eeoffZmask]) > 0)
        mmonZmask = (ak.num(mmonZmask[mmonZmask]) > 0)
        mmoffZmask = (ak.num(mmoffZmask[mmoffZmask]) > 0)
        emSSmask = (ak.num(emSSmask[emSSmask]) > 0)

        ##################################################################
        ### 3 leptons
        ##################################################################

        # eem
        muon_eem = mu[(nElec == 2) & (nMuon == 1) & (mu.pt > -1)]
        elec_eem = e[(nElec == 2) & (nMuon == 1) & (e.pt > -1)]

        ee_eem = ak.combinations(elec_eem, 2, fields=["e0", "e1"])
        ee_eemZmask = (ee_eem.e0.charge * ee_eem.e1.charge < 1) & (np.abs(
            (ee_eem.e0 + ee_eem.e1).mass - 91.2) < 10)
        ee_eemOffZmask = (ee_eem.e0.charge * ee_eem.e1.charge < 1) & (np.abs(
            (ee_eem.e0 + ee_eem.e1).mass - 91.2) > 10)
        ee_eemZmask = (ak.num(ee_eemZmask[ee_eemZmask]) > 0)
        ee_eemOffZmask = (ak.num(ee_eemOffZmask[ee_eemOffZmask]) > 0)

        eepair_eem = (ee_eem.e0 + ee_eem.e1)
        trilep_eem = eepair_eem + muon_eem  #ak.cartesian({"e0":ee_eem.e0,"e1":ee_eem.e1, "m":muon_eem})

        # mme
        muon_mme = mu[(nElec == 1) & (nMuon == 2) & (mu.pt > -1)]
        elec_mme = e[(nElec == 1) & (nMuon == 2) & (e.pt > -1)]

        mm_mme = ak.combinations(muon_mme, 2, fields=["m0", "m1"])
        mm_mmeZmask = (mm_mme.m0.charge * mm_mme.m1.charge < 1) & (np.abs(
            (mm_mme.m0 + mm_mme.m1).mass - 91.2) < 10)
        mm_mmeOffZmask = (mm_mme.m0.charge * mm_mme.m1.charge < 1) & (np.abs(
            (mm_mme.m0 + mm_mme.m1).mass - 91.2) > 10)
        mm_mmeZmask = (ak.num(mm_mmeZmask[mm_mmeZmask]) > 0)
        mm_mmeOffZmask = (ak.num(mm_mmeOffZmask[mm_mmeOffZmask]) > 0)

        mmpair_mme = (mm_mme.m0 + mm_mme.m1)
        trilep_mme = mmpair_mme + elec_mme

        mZ_mme = mmpair_mme.mass
        mZ_eem = eepair_eem.mass
        m3l_eem = trilep_eem.mass
        m3l_mme = trilep_mme.mass

        # eee and mmm
        eee = e[(nElec == 3) & (nMuon == 0) & (e.pt > -1)]
        mmm = mu[(nElec == 0) & (nMuon == 3) & (mu.pt > -1)]

        eee_leps = ak.combinations(eee, 3, fields=["e0", "e1", "e2"])
        mmm_leps = ak.combinations(mmm, 3, fields=["m0", "m1", "m2"])

        ee_pairs = ak.combinations(eee, 2, fields=["e0", "e1"])
        mm_pairs = ak.combinations(mmm, 2, fields=["m0", "m1"])
        ee_pairs_index = ak.argcombinations(eee, 2, fields=["e0", "e1"])
        mm_pairs_index = ak.argcombinations(mmm, 2, fields=["m0", "m1"])

        mmSFOS_pairs = mm_pairs[
            (np.abs(mm_pairs.m0.pdgId) == np.abs(mm_pairs.m1.pdgId))
            & (mm_pairs.m0.charge != mm_pairs.m1.charge)]
        offZmask_mm = ak.all(
            np.abs((mmSFOS_pairs.m0 + mmSFOS_pairs.m1).mass - 91.2) > 10.,
            axis=1,
            keepdims=True) & (ak.num(mmSFOS_pairs) > 0)
        onZmask_mm = ak.any(
            np.abs((mmSFOS_pairs.m0 + mmSFOS_pairs.m1).mass - 91.2) < 10.,
            axis=1,
            keepdims=True)

        eeSFOS_pairs = ee_pairs[
            (np.abs(ee_pairs.e0.pdgId) == np.abs(ee_pairs.e1.pdgId))
            & (ee_pairs.e0.charge != ee_pairs.e1.charge)]
        offZmask_ee = ak.all(
            np.abs((eeSFOS_pairs.e0 + eeSFOS_pairs.e1).mass - 91.2) > 10,
            axis=1,
            keepdims=True) & (ak.num(eeSFOS_pairs) > 0)
        onZmask_ee = ak.any(
            np.abs((eeSFOS_pairs.e0 + eeSFOS_pairs.e1).mass - 91.2) < 10,
            axis=1,
            keepdims=True)

        # Create masks **for event selection**
        eeeOnZmask = (ak.num(onZmask_ee[onZmask_ee]) > 0)
        eeeOffZmask = (ak.num(offZmask_ee[offZmask_ee]) > 0)
        mmmOnZmask = (ak.num(onZmask_mm[onZmask_mm]) > 0)
        mmmOffZmask = (ak.num(offZmask_mm[offZmask_mm]) > 0)

        # Now we need to create masks for the leptons in order to select leptons from the Z boson candidate (in onZ categories)
        ZeeMask = ak.argmin(np.abs((eeSFOS_pairs.e0 + eeSFOS_pairs.e1).mass -
                                   91.2),
                            axis=1,
                            keepdims=True)
        ZmmMask = ak.argmin(np.abs((mmSFOS_pairs.m0 + mmSFOS_pairs.m1).mass -
                                   91.2),
                            axis=1,
                            keepdims=True)

        Zee = eeSFOS_pairs[ZeeMask]
        Zmm = mmSFOS_pairs[ZmmMask]
        eZ0 = Zee.e0[ak.num(eeSFOS_pairs) > 0]
        eZ1 = Zee.e1[ak.num(eeSFOS_pairs) > 0]
        eZ = eZ0 + eZ1
        mZ0 = Zmm.m0[ak.num(mmSFOS_pairs) > 0]
        mZ1 = Zmm.m1[ak.num(mmSFOS_pairs) > 0]
        mZ = mZ0 + mZ1
        mZ_eee = eZ.mass
        mZ_mmm = mZ.mass

        # And for the W boson
        ZmmIndices = mm_pairs_index[ZmmMask]
        ZeeIndices = ee_pairs_index[ZeeMask]
        eW = eee[~ZeeIndices.e0 | ~ZeeIndices.e1]
        mW = mmm[~ZmmIndices.m0 | ~ZmmIndices.m1]

        triElec = eee_leps.e0 + eee_leps.e1 + eee_leps.e2
        triMuon = mmm_leps.m0 + mmm_leps.m1 + mmm_leps.m2
        m3l_eee = triElec.mass
        m3l_mmm = triMuon.mass

        ##################################################################
        ### >=4 leptons
        ##################################################################

        # 4lep cat
        is4lmask = ((nElec + nMuon) >= 4)
        muon_4l = mu[(is4lmask) & (mu.pt > -1)]
        elec_4l = e[(is4lmask) & (e.pt > -1)]

        # selecting 4 leading leptons
        leptons = ak.concatenate([e, mu], axis=-1)
        leptons_sorted = leptons[ak.argsort(leptons.pt,
                                            axis=-1,
                                            ascending=False)]
        lep4l = leptons_sorted[:, 0:4]
        e4l = lep4l[abs(lep4l.pdgId) == 11]
        mu4l = lep4l[abs(lep4l.pdgId) == 13]
        nElec4l = ak.num(e4l)
        nMuon4l = ak.num(mu4l)

        # Triggers
        trig_eeSS = passTrigger(events, 'ee', isData, dataset)
        trig_mmSS = passTrigger(events, 'mm', isData, dataset)
        trig_emSS = passTrigger(events, 'em', isData, dataset)
        trig_eee = passTrigger(events, 'eee', isData, dataset)
        trig_mmm = passTrigger(events, 'mmm', isData, dataset)
        trig_eem = passTrigger(events, 'eem', isData, dataset)
        trig_mme = passTrigger(events, 'mme', isData, dataset)
        trig_4l = triggerFor4l(events, nMuon, nElec, isData, dataset)

        # MET filters

        # Weights
        genw = np.ones_like(events['event']) if (
            isData or len(self._wc_names_lst) > 0) else events['genWeight']

        ### We need weights for: normalization, lepSF, triggerSF, pileup, btagSF...
        weights = {}
        for r in [
                'all', 'ee', 'mm', 'em', 'eee', 'mmm', 'eem', 'mme', 'eeee',
                'eeem', 'eemm', 'mmme', 'mmmm'
        ]:
            # weights[r] = coffea.analysis_tools.Weights(len(events))
            weights[r] = coffea.analysis_tools.Weights(len(events),
                                                       storeIndividual=True)
            if len(self._wc_names_lst) > 0:
                sow = np.ones_like(
                    sow
                )  # Not valid in nanoAOD for EFT samples, MUST use SumOfEFTweights at analysis level
            weights[r].add('norm', genw if isData else (xsec / sow) * genw)
            weights[r].add('btagSF', btagSF, btagSFUp, btagSFDo)
            weights[r].add('lepSF', events.lepSF_nom, events.lepSF_hi,
                           events.lepSF_lo)

        # Extract the EFT quadratic coefficients and optionally use them to calculate the coefficients on the w**2 quartic function
        # eft_coeffs is never Jagged so convert immediately to numpy for ease of use.
        eft_coeffs = ak.to_numpy(events['EFTfitCoefficients']) if hasattr(
            events, "EFTfitCoefficients") else None
        if eft_coeffs is not None:
            # Check to see if the ordering of WCs for this sample matches what want
            if self._samples[dataset]['WCnames'] != self._wc_names_lst:
                eft_coeffs = efth.remap_coeffs(
                    self._samples[dataset]['WCnames'], self._wc_names_lst,
                    eft_coeffs)
        eft_w2_coeffs = efth.calc_w2_coeffs(eft_coeffs, self._dtype) if (
            self._do_errors and eft_coeffs is not None) else None

        # Selections and cuts
        selections = PackedSelection()  #(dtype='uint64')
        channels2LSS = ['eeSSonZ', 'eeSSoffZ', 'mmSSonZ', 'mmSSoffZ', 'emSS']
        selections.add('eeSSonZ', (eeonZmask) & (eeSSmask) & (trig_eeSS))
        selections.add('eeSSoffZ', (eeoffZmask) & (eeSSmask) & (trig_eeSS))
        selections.add('mmSSonZ', (mmonZmask) & (mmSSmask) & (trig_mmSS))
        selections.add('mmSSoffZ', (mmoffZmask) & (mmSSmask) & (trig_mmSS))
        selections.add('emSS', (emSSmask) & (trig_emSS))

        channels3L = ['eemSSonZ', 'eemSSoffZ', 'mmeSSonZ', 'mmeSSoffZ']
        selections.add('eemSSonZ', (ee_eemZmask) & (trig_eem))
        selections.add('eemSSoffZ', (ee_eemOffZmask) & (trig_eem))
        selections.add('mmeSSonZ', (mm_mmeZmask) & (trig_mme))
        selections.add('mmeSSoffZ', (mm_mmeOffZmask) & (trig_mme))

        channels3L += ['eeeSSonZ', 'eeeSSoffZ', 'mmmSSonZ', 'mmmSSoffZ']
        selections.add('eeeSSonZ', (eeeOnZmask) & (trig_eee))
        selections.add('eeeSSoffZ', (eeeOffZmask) & (trig_eee))
        selections.add('mmmSSonZ', (mmmOnZmask) & (trig_mmm))
        selections.add('mmmSSoffZ', (mmmOffZmask) & (trig_mmm))

        channels4L = ['eeee', 'eeem', 'eemm', 'mmme', 'mmmm']
        selections.add('eeee', ((nElec4l == 4) & (nMuon4l == 0)) & (trig_4l))
        selections.add('eeem', ((nElec4l == 3) & (nMuon4l == 1)) & (trig_4l))
        selections.add('eemm', ((nElec4l == 2) & (nMuon4l == 2)) & (trig_4l))
        selections.add('mmme', ((nElec4l == 1) & (nMuon4l == 3)) & (trig_4l))
        selections.add('mmmm', ((nElec4l == 0) & (nMuon4l == 4)) & (trig_4l))

        selections.add('ch+', (sumcharge > 0))
        selections.add('ch-', (sumcharge < 0))
        selections.add('ch0', (sumcharge == 0))

        levels = ['base', '1+bm2+bl', '1bm', '2+bm']
        selections.add('base', (nElec + nMuon >= 2))
        selections.add('1+bm2+bl', (nElec + nMuon >= 2) & ((nbtagsm >= 1) &
                                                           (nbtagsl >= 2)))
        selections.add('1bm', (nElec + nMuon >= 2) & (nbtagsm == 1))
        selections.add('2+bm', (nElec + nMuon >= 2) & (nbtagsm >= 2))

        # Variables
        invMass_eeSSonZ = (eeSSonZ.e0 + eeSSonZ.e1).mass
        invMass_eeSSoffZ = (eeSSoffZ.e0 + eeSSoffZ.e1).mass
        invMass_mmSSonZ = (mmSSonZ.m0 + mmSSonZ.m1).mass
        invMass_mmSSoffZ = (mmSSoffZ.m0 + mmSSoffZ.m1).mass
        invMass_emSS = (emSS.e + emSS.m).mass

        varnames = {}
        varnames['met'] = met.pt
        varnames['ht'] = ht
        varnames['njets'] = njets
        varnames['invmass'] = {
            'eeSSonZ': invMass_eeSSonZ,
            'eeSSoffZ': invMass_eeSSoffZ,
            'mmSSonZ': invMass_mmSSonZ,
            'mmSSoffZ': invMass_mmSSoffZ,
            'emSS': invMass_emSS,
            'eemSSonZ': mZ_eem,
            'eemSSoffZ': mZ_eem,
            'mmeSSonZ': mZ_mme,
            'mmeSSoffZ': mZ_mme,
            'eeeSSonZ': mZ_eee,
            'eeeSSoffZ': mZ_eee,
            'mmmSSonZ': mZ_mmm,
            'mmmSSoffZ': mZ_mmm,
        }
        varnames['m3l'] = {
            'eemSSonZ': m3l_eem,
            'eemSSoffZ': m3l_eem,
            'mmeSSonZ': m3l_mme,
            'mmeSSoffZ': m3l_mme,
            'eeeSSonZ': m3l_eee,
            'eeeSSoffZ': m3l_eee,
            'mmmSSonZ': m3l_mmm,
            'mmmSSoffZ': m3l_mmm,
        }
        varnames['e0pt'] = e0.pt
        varnames['e0eta'] = e0.eta
        varnames['m0pt'] = m0.pt
        varnames['m0eta'] = m0.eta
        varnames['j0pt'] = j0.pt
        varnames['j0eta'] = j0.eta
        varnames['counts'] = np.ones_like(events['event'])

        # systematics
        systList = []
        if isData == False:
            systList = ['nominal']
            if self._do_systematics:
                systList = systList + [
                    'lepSFUp', 'lepSFDown', 'btagSFUp', 'btagSFDown'
                ]
        else:
            systList = ['noweight']
        # fill Histos
        hout = self.accumulator.identity()
        normweights = weights['all'].weight().flatten(
        )  # Why does it not complain about .flatten() here?
        sowweights = np.ones_like(normweights) if len(
            self._wc_names_lst) > 0 else normweights
        hout['SumOfEFTweights'].fill(sample=histAxisName,
                                     SumOfEFTweights=varnames['counts'],
                                     weight=sowweights,
                                     eft_coeff=eft_coeffs,
                                     eft_err_coeff=eft_w2_coeffs)

        for syst in systList:
            for var, v in varnames.items():
                for ch in channels2LSS + channels3L + channels4L:
                    for sumcharge in ['ch+', 'ch-', 'ch0']:
                        for lev in levels:
                            #find the event weight to be used when filling the histograms
                            weightSyst = syst
                            #in the case of 'nominal', or the jet energy systematics, no weight systematic variation is used (weightSyst=None)
                            if syst in [
                                    'nominal', 'JERUp', 'JERDown', 'JESUp',
                                    'JESDown'
                            ]:
                                weightSyst = None  # no weight systematic for these variations
                            if syst == 'noweight':
                                weight = np.ones(len(events))  # for data
                            else:
                                # call weights.weight() with the name of the systematic to be varied
                                if ch in channels3L: ch_w = ch[:3]
                                elif ch in channels2LSS: ch_w = ch[:2]
                                else: ch_w = ch
                                weight = weights['all'].weight(
                                    weightSyst
                                ) if isData else weights[ch_w].weight(
                                    weightSyst)
                            cuts = [ch] + [lev] + [sumcharge]
                            cut = selections.all(*cuts)
                            weights_flat = weight[cut].flatten(
                            )  # Why does it not complain about .flatten() here?
                            weights_ones = np.ones_like(weights_flat,
                                                        dtype=np.int)
                            eft_coeffs_cut = eft_coeffs[
                                cut] if eft_coeffs is not None else None
                            eft_w2_coeffs_cut = eft_w2_coeffs[
                                cut] if eft_w2_coeffs is not None else None

                            # filling histos
                            if var == 'invmass':
                                if ((ch in [
                                        'eeeSSoffZ', 'mmmSSoffZ', 'eeeSSonZ',
                                        'mmmSSonZ'
                                ]) or (ch in channels4L)):
                                    continue
                                else:
                                    values = ak.flatten(v[ch][cut])
                                hout['invmass'].fill(
                                    eft_coeff=eft_coeffs_cut,
                                    eft_err_coeff=eft_w2_coeffs_cut,
                                    sample=histAxisName,
                                    channel=ch,
                                    cut=lev,
                                    sumcharge=sumcharge,
                                    invmass=values,
                                    weight=weights_flat,
                                    systematic=syst)
                            elif var == 'm3l':
                                if ((ch in channels2LSS) or (ch in [
                                        'eeeSSoffZ', 'mmmSSoffZ', 'eeeSSonZ',
                                        'mmmSSonZ'
                                ]) or (ch in channels4L)):
                                    continue
                                values = ak.flatten(v[ch][cut])
                                hout['m3l'].fill(
                                    eft_coeff=eft_coeffs_cut,
                                    eft_err_coeff=eft_w2_coeffs_cut,
                                    sample=histAxisName,
                                    channel=ch,
                                    cut=lev,
                                    sumcharge=sumcharge,
                                    m3l=values,
                                    weight=weights_flat,
                                    systematic=syst)
                            else:
                                values = v[cut]
                                # These all look identical, do we need if/else here?
                                if var == 'ht':
                                    hout[var].fill(
                                        eft_coeff=eft_coeffs_cut,
                                        eft_err_coeff=eft_w2_coeffs_cut,
                                        ht=values,
                                        sample=histAxisName,
                                        channel=ch,
                                        cut=lev,
                                        sumcharge=sumcharge,
                                        weight=weights_flat,
                                        systematic=syst)
                                elif var == 'met':
                                    hout[var].fill(
                                        eft_coeff=eft_coeffs_cut,
                                        eft_err_coeff=eft_w2_coeffs_cut,
                                        met=values,
                                        sample=histAxisName,
                                        channel=ch,
                                        cut=lev,
                                        sumcharge=sumcharge,
                                        weight=weights_flat,
                                        systematic=syst)
                                elif var == 'njets':
                                    hout[var].fill(
                                        eft_coeff=eft_coeffs_cut,
                                        eft_err_coeff=eft_w2_coeffs_cut,
                                        njets=values,
                                        sample=histAxisName,
                                        channel=ch,
                                        cut=lev,
                                        sumcharge=sumcharge,
                                        weight=weights_flat,
                                        systematic=syst)
                                elif var == 'nbtags':
                                    hout[var].fill(
                                        eft_coeff=eft_coeffs_cut,
                                        eft_err_coeff=eft_w2_coeffs_cut,
                                        nbtags=values,
                                        sample=histAxisName,
                                        channel=ch,
                                        cut=lev,
                                        sumcharge=sumcharge,
                                        weight=weights_flat,
                                        systematic=syst)
                                elif var == 'counts':
                                    hout[var].fill(counts=values,
                                                   sample=histAxisName,
                                                   channel=ch,
                                                   cut=lev,
                                                   sumcharge=sumcharge,
                                                   weight=weights_ones,
                                                   systematic=syst)
                                elif var == 'j0eta':
                                    if lev == 'base': continue
                                    values = ak.flatten(values)
                                    #values=np.asarray(values)
                                    hout[var].fill(
                                        eft_coeff=eft_coeffs_cut,
                                        eft_err_coeff=eft_w2_coeffs_cut,
                                        j0eta=values,
                                        sample=histAxisName,
                                        channel=ch,
                                        cut=lev,
                                        sumcharge=sumcharge,
                                        weight=weights_flat,
                                        systematic=syst)
                                elif var == 'e0pt':
                                    if ch in [
                                            'mmSSonZ', 'mmSSoffZ', 'mmmSSoffZ',
                                            'mmmSSonZ', 'mmmm'
                                    ]:
                                        continue
                                    values = ak.flatten(values)
                                    #values=np.asarray(values)
                                    hout[var].fill(
                                        eft_coeff=eft_coeffs_cut,
                                        eft_err_coeff=eft_w2_coeffs_cut,
                                        e0pt=values,
                                        sample=histAxisName,
                                        channel=ch,
                                        cut=lev,
                                        sumcharge=sumcharge,
                                        weight=weights_flat,
                                        systematic=syst
                                    )  # Crashing here, not sure why. Related to values?
                                elif var == 'm0pt':
                                    if ch in [
                                            'eeSSonZ', 'eeSSoffZ', 'eeeSSoffZ',
                                            'eeeSSonZ', 'eeee'
                                    ]:
                                        continue
                                    values = ak.flatten(values)
                                    #values=np.asarray(values)
                                    hout[var].fill(
                                        eft_coeff=eft_coeffs_cut,
                                        eft_err_coeff=eft_w2_coeffs_cut,
                                        m0pt=values,
                                        sample=histAxisName,
                                        channel=ch,
                                        cut=lev,
                                        sumcharge=sumcharge,
                                        weight=weights_flat,
                                        systematic=syst)
                                elif var == 'e0eta':
                                    if ch in [
                                            'mmSSonZ', 'mmSSoffZ', 'mmmSSoffZ',
                                            'mmmSSonZ', 'mmmm'
                                    ]:
                                        continue
                                    values = ak.flatten(values)
                                    #values=np.asarray(values)
                                    hout[var].fill(
                                        eft_coeff=eft_coeffs_cut,
                                        eft_err_coeff=eft_w2_coeffs_cut,
                                        e0eta=values,
                                        sample=histAxisName,
                                        channel=ch,
                                        cut=lev,
                                        sumcharge=sumcharge,
                                        weight=weights_flat,
                                        systematic=syst)
                                elif var == 'm0eta':
                                    if ch in [
                                            'eeSSonZ', 'eeSSoffZ', 'eeeSSoffZ',
                                            'eeeSSonZ', 'eeee'
                                    ]:
                                        continue
                                    values = ak.flatten(values)
                                    #values=np.asarray(values)
                                    hout[var].fill(
                                        eft_coeff=eft_coeffs_cut,
                                        eft_err_coeff=eft_w2_coeffs_cut,
                                        m0eta=values,
                                        sample=histAxisName,
                                        channel=ch,
                                        cut=lev,
                                        sumcharge=sumcharge,
                                        weight=weights_flat,
                                        systematic=syst)
                                elif var == 'j0pt':
                                    if lev == 'base': continue
                                    values = ak.flatten(values)
                                    #values=np.asarray(values)
                                    hout[var].fill(
                                        eft_coeff=eft_coeffs_cut,
                                        eft_err_coeff=eft_w2_coeffs_cut,
                                        j0pt=values,
                                        sample=histAxisName,
                                        channel=ch,
                                        cut=lev,
                                        sumcharge=sumcharge,
                                        weight=weights_flat,
                                        systematic=syst)
        return hout