Ejemplo n.º 1
0
 def testRoundingWithImpossiblyConstrainedIntRanges(self):
     parameters = [
         RangeParameter("x",
                        lower=1,
                        upper=3,
                        parameter_type=ParameterType.INT),
         RangeParameter("y",
                        lower=1,
                        upper=3,
                        parameter_type=ParameterType.INT),
     ]
     constrained_int_search_space = SearchSpace(
         parameters=parameters,
         parameter_constraints=[
             SumConstraint(parameters=parameters,
                           is_upper_bound=True,
                           bound=3)
         ],
     )
     t = IntToFloat(
         search_space=constrained_int_search_space,
         observation_features=None,
         observation_data=None,
     )
     self.assertEqual(t.rounding, "randomized")
     observation_features = [
         ObservationFeatures(parameters={
             "x": 2.6,
             "y": 2.6
         })
     ]
     self.assertFalse(
         constrained_int_search_space.check_membership(
             t.untransform_observation_features(
                 observation_features=observation_features)[0].parameters))
Ejemplo n.º 2
0
 def setUp(self):
     self.search_space = SearchSpace(
         parameters=[
             RangeParameter("x",
                            lower=1,
                            upper=3,
                            parameter_type=ParameterType.FLOAT),
             RangeParameter("a",
                            lower=1,
                            upper=2,
                            parameter_type=ParameterType.INT),
             RangeParameter("d",
                            lower=1,
                            upper=3,
                            parameter_type=ParameterType.INT),
             ChoiceParameter("b",
                             parameter_type=ParameterType.STRING,
                             values=["a", "b", "c"]),
         ],
         parameter_constraints=[
             ParameterConstraint(constraint_dict={
                 "x": -0.5,
                 "a": 1
             },
                                 bound=0.5)
         ],
     )
     self.t = IntToFloat(
         search_space=self.search_space,
         observation_features=None,
         observation_data=None,
     )
     self.t2 = IntToFloat(
         search_space=self.search_space,
         observation_features=None,
         observation_data=None,
         config={"rounding": "randomized"},
     )
Ejemplo n.º 3
0
 def setUp(self):
     parameters = [
         RangeParameter("x",
                        lower=1,
                        upper=3,
                        parameter_type=ParameterType.FLOAT),
         RangeParameter("a",
                        lower=1,
                        upper=2,
                        parameter_type=ParameterType.INT),
         RangeParameter("d",
                        lower=1,
                        upper=3,
                        parameter_type=ParameterType.INT),
         ChoiceParameter("b",
                         parameter_type=ParameterType.STRING,
                         values=["a", "b", "c"]),
     ]
     self.search_space = SearchSpace(
         parameters=parameters,
         parameter_constraints=[
             OrderConstraint(lower_parameter=parameters[0],
                             upper_parameter=parameters[1])
         ],
     )
     self.t = IntToFloat(
         search_space=self.search_space,
         observation_features=None,
         observation_data=None,
     )
     self.t2 = IntToFloat(
         search_space=self.search_space,
         observation_features=None,
         observation_data=None,
         config={"rounding": "randomized"},
     )
Ejemplo n.º 4
0
class IntToFloatTransformTest(TestCase):
    def setUp(self):
        self.search_space = SearchSpace(
            parameters=[
                RangeParameter("x",
                               lower=1,
                               upper=3,
                               parameter_type=ParameterType.FLOAT),
                RangeParameter("a",
                               lower=1,
                               upper=2,
                               parameter_type=ParameterType.INT),
                RangeParameter("d",
                               lower=1,
                               upper=3,
                               parameter_type=ParameterType.INT),
                ChoiceParameter("b",
                                parameter_type=ParameterType.STRING,
                                values=["a", "b", "c"]),
            ],
            parameter_constraints=[
                ParameterConstraint(constraint_dict={
                    "x": -0.5,
                    "a": 1
                },
                                    bound=0.5)
            ],
        )
        self.t = IntToFloat(
            search_space=self.search_space,
            observation_features=None,
            observation_data=None,
        )
        self.t2 = IntToFloat(
            search_space=self.search_space,
            observation_features=None,
            observation_data=None,
            config={"rounding": "randomized"},
        )

    def testInit(self):
        self.assertEqual(self.t.transform_parameters, {"a", "d"})

    def testTransformObservationFeatures(self):
        observation_features = [
            ObservationFeatures(parameters={
                "x": 2.2,
                "a": 2,
                "b": "b",
                "d": 4
            })
        ]
        obs_ft2 = deepcopy(observation_features)
        obs_ft2 = self.t.transform_observation_features(obs_ft2)
        self.assertEqual(
            obs_ft2,
            [
                ObservationFeatures(parameters={
                    "x": 2.2,
                    "a": 2,
                    "b": "b",
                    "d": 4
                })
            ],
        )
        self.assertTrue(isinstance(obs_ft2[0].parameters["a"], float))
        self.assertTrue(isinstance(obs_ft2[0].parameters["d"], float))
        obs_ft2 = self.t.untransform_observation_features(obs_ft2)
        self.assertEqual(obs_ft2, observation_features)

        # Let the transformed space be a float, verify it becomes an int.
        obs_ft3 = [
            ObservationFeatures(parameters={
                "x": 2.2,
                "a": 2.2,
                "b": "b",
                "d": 3.8
            })
        ]
        obs_ft3 = self.t.untransform_observation_features(obs_ft3)
        self.assertEqual(obs_ft3, observation_features)

        # Test forward transform on partial observation
        obs_ft4 = [ObservationFeatures(parameters={"x": 2.2, "d": 4})]
        obs_ft4 = self.t.transform_observation_features(obs_ft4)
        self.assertEqual(obs_ft4,
                         [ObservationFeatures(parameters={
                             "x": 2.2,
                             "d": 4
                         })])
        self.assertTrue(isinstance(obs_ft4[0].parameters["d"], float))
        obs_ft5 = self.t.transform_observation_features(
            [ObservationFeatures({})])
        self.assertEqual(obs_ft5[0], ObservationFeatures({}))

    def testTransformObservationFeaturesRandomized(self):
        observation_features = [
            ObservationFeatures(parameters={
                "x": 2.2,
                "a": 2,
                "b": "b",
                "d": 4
            })
        ]
        obs_ft2 = deepcopy(observation_features)
        obs_ft2 = self.t2.transform_observation_features(obs_ft2)
        self.assertEqual(
            obs_ft2,
            [
                ObservationFeatures(parameters={
                    "x": 2.2,
                    "a": 2,
                    "b": "b",
                    "d": 4
                })
            ],
        )
        self.assertTrue(isinstance(obs_ft2[0].parameters["a"], float))
        self.assertTrue(isinstance(obs_ft2[0].parameters["d"], float))
        obs_ft2 = self.t2.untransform_observation_features(obs_ft2)
        self.assertEqual(obs_ft2, observation_features)

    def testTransformSearchSpace(self):
        ss2 = deepcopy(self.search_space)
        ss2 = self.t.transform_search_space(ss2)
        self.assertTrue(ss2.parameters["a"].parameter_type,
                        ParameterType.FLOAT)
        self.assertTrue(ss2.parameters["d"].parameter_type,
                        ParameterType.FLOAT)
Ejemplo n.º 5
0
class IntToFloatTransformTest(TestCase):
    def setUp(self):
        parameters = [
            RangeParameter("x",
                           lower=1,
                           upper=3,
                           parameter_type=ParameterType.FLOAT),
            RangeParameter("a",
                           lower=1,
                           upper=2,
                           parameter_type=ParameterType.INT),
            RangeParameter("d",
                           lower=1,
                           upper=3,
                           parameter_type=ParameterType.INT),
            ChoiceParameter("b",
                            parameter_type=ParameterType.STRING,
                            values=["a", "b", "c"]),
        ]
        self.search_space = SearchSpace(
            parameters=parameters,
            parameter_constraints=[
                OrderConstraint(lower_parameter=parameters[0],
                                upper_parameter=parameters[1])
            ],
        )
        self.t = IntToFloat(
            search_space=self.search_space,
            observation_features=None,
            observation_data=None,
        )
        self.t2 = IntToFloat(
            search_space=self.search_space,
            observation_features=None,
            observation_data=None,
            config={"rounding": "randomized"},
        )

    def testInit(self):
        self.assertEqual(self.t.transform_parameters, {"a", "d"})

    def testTransformObservationFeatures(self):
        observation_features = [
            ObservationFeatures(parameters={
                "x": 2.2,
                "a": 2,
                "b": "b",
                "d": 4
            })
        ]
        obs_ft2 = deepcopy(observation_features)
        obs_ft2 = self.t.transform_observation_features(obs_ft2)
        self.assertEqual(
            obs_ft2,
            [
                ObservationFeatures(parameters={
                    "x": 2.2,
                    "a": 2,
                    "b": "b",
                    "d": 4
                })
            ],
        )
        self.assertTrue(isinstance(obs_ft2[0].parameters["a"], float))
        self.assertTrue(isinstance(obs_ft2[0].parameters["d"], float))
        obs_ft2 = self.t.untransform_observation_features(obs_ft2)
        self.assertEqual(obs_ft2, observation_features)

        # Let the transformed space be a float, verify it becomes an int.
        obs_ft3 = [
            ObservationFeatures(parameters={
                "x": 2.2,
                "a": 2.2,
                "b": "b",
                "d": 3.8
            })
        ]
        obs_ft3 = self.t.untransform_observation_features(obs_ft3)
        self.assertEqual(obs_ft3, observation_features)

        # Test forward transform on partial observation
        obs_ft4 = [ObservationFeatures(parameters={"x": 2.2, "d": 4})]
        obs_ft4 = self.t.transform_observation_features(obs_ft4)
        self.assertEqual(obs_ft4,
                         [ObservationFeatures(parameters={
                             "x": 2.2,
                             "d": 4
                         })])
        self.assertTrue(isinstance(obs_ft4[0].parameters["d"], float))
        obs_ft5 = self.t.transform_observation_features(
            [ObservationFeatures({})])
        self.assertEqual(obs_ft5[0], ObservationFeatures({}))

    def testTransformObservationFeaturesRandomized(self):
        observation_features = [
            ObservationFeatures(parameters={
                "x": 2.2,
                "a": 2,
                "b": "b",
                "d": 4
            })
        ]
        obs_ft2 = deepcopy(observation_features)
        obs_ft2 = self.t2.transform_observation_features(obs_ft2)
        self.assertEqual(
            obs_ft2,
            [
                ObservationFeatures(parameters={
                    "x": 2.2,
                    "a": 2,
                    "b": "b",
                    "d": 4
                })
            ],
        )
        self.assertTrue(isinstance(obs_ft2[0].parameters["a"], float))
        self.assertTrue(isinstance(obs_ft2[0].parameters["d"], float))
        obs_ft2 = self.t2.untransform_observation_features(obs_ft2)
        self.assertEqual(obs_ft2, observation_features)

    def testTransformSearchSpace(self):
        ss2 = deepcopy(self.search_space)
        ss2 = self.t.transform_search_space(ss2)
        self.assertTrue(ss2.parameters["a"].parameter_type,
                        ParameterType.FLOAT)
        self.assertTrue(ss2.parameters["d"].parameter_type,
                        ParameterType.FLOAT)

    def testRoundingWithConstrainedIntRanges(self):
        parameters = [
            RangeParameter("x",
                           lower=1,
                           upper=3,
                           parameter_type=ParameterType.INT),
            RangeParameter("y",
                           lower=1,
                           upper=3,
                           parameter_type=ParameterType.INT),
        ]
        constrained_int_search_space = SearchSpace(
            parameters=parameters,
            parameter_constraints=[
                SumConstraint(parameters=parameters,
                              is_upper_bound=True,
                              bound=5)
            ],
        )
        t = IntToFloat(
            search_space=constrained_int_search_space,
            observation_features=None,
            observation_data=None,
        )
        self.assertEqual(t.rounding, "randomized")
        observation_features = [
            ObservationFeatures(parameters={
                "x": 2.6,
                "y": 2.6
            })
        ]
        self.assertTrue(
            constrained_int_search_space.check_membership(
                t.untransform_observation_features(
                    observation_features=observation_features)[0].parameters))

    def testRoundingWithImpossiblyConstrainedIntRanges(self):
        parameters = [
            RangeParameter("x",
                           lower=1,
                           upper=3,
                           parameter_type=ParameterType.INT),
            RangeParameter("y",
                           lower=1,
                           upper=3,
                           parameter_type=ParameterType.INT),
        ]
        constrained_int_search_space = SearchSpace(
            parameters=parameters,
            parameter_constraints=[
                SumConstraint(parameters=parameters,
                              is_upper_bound=True,
                              bound=3)
            ],
        )
        t = IntToFloat(
            search_space=constrained_int_search_space,
            observation_features=None,
            observation_data=None,
        )
        self.assertEqual(t.rounding, "randomized")
        observation_features = [
            ObservationFeatures(parameters={
                "x": 2.6,
                "y": 2.6
            })
        ]
        self.assertFalse(
            constrained_int_search_space.check_membership(
                t.untransform_observation_features(
                    observation_features=observation_features)[0].parameters))