Ejemplo n.º 1
0
def get_admission_channel():
    db = DatabaseHelper()
    data = db.get_admission_channel()

    return api_helper.return_response(data)
Ejemplo n.º 2
0
    def analyze_student_status(self, year=None):
        connect = DatabaseHelper()
        data = connect.get_all_admission(year)
        value = {}
        if data['value']:

            df = pd.DataFrame(data['value'])
            df = df[df['admission_year'] == int(year)]
            if not df.empty:
                status_data = analyze_helper.set_fullname(
                    connect.get_status_list())
                status_dic = analyze_helper.set_dict(status_data.index,
                                                     status_data.status_title)
                channel_data = analyze_helper.set_fullname(
                    connect.get_admission_channel())
                channel_sample = self.split_channel(channel_data)
                dupli_channel = channel_sample.channel_name.duplicated(
                    keep=False)
                channel_sample.loc[dupli_channel, 'channel_name'] = channel_sample.loc[dupli_channel, 'channel_name'] + ' (' + \
                                                                channel_sample['channel_round'] + ')'
                channel_dict = analyze_helper.set_dict(
                    channel_sample.index, channel_sample.channel_name)
                branch = connect.get_branch()
                branch_data = analyze_helper.set_branch(branch['value'])
                branch_dict = analyze_helper.set_dict(branch_data.index,
                                                      branch_data.branch_name)

                group_brance = df.groupby(['channel_id', 'branch_id'
                                           ]).size().unstack(fill_value=0)
                group_brance = analyze_helper.check_list_column(
                    branch_data.index, group_brance)
                group_brance = analyze_helper.check_list(
                    channel_data.index, group_brance)
                group_brance = analyze_helper.set_fullname_column(
                    branch_dict, group_brance)
                group_brance = analyze_helper.set_fullname_index(
                    channel_dict, group_brance)
                branch_list = group_brance.columns.tolist()
                channel_id_list = channel_data.index.tolist()

                table_count = []
                for c_id in channel_id_list:
                    by_channel = {}
                    data = df[df['channel_id'] == c_id]
                    if not data.empty:
                        count = len(data)
                        max_data = data.branch_id.value_counts().max()
                        min_data = data.branch_id.value_counts().min()
                    else:
                        count = 0
                        max_data = 0
                        min_data = 0
                    by_channel['channel'] = channel_dict[c_id]
                    by_channel['count'] = str(count)
                    by_channel['max_data'] = str(max_data)
                    by_channel['min_data'] = str(min_data)
                    table_count.append(by_channel)

                all_student = len(df)
                channel_count = df.channel_id.value_counts()

                group = df[(df['status_id'] == 2) | (df['status_id'] == 3)]

                group = group.groupby(['channel_id', 'status_id'
                                       ]).size().unstack(fill_value=0)
                if group.empty:
                    group = pd.DataFrame(0,
                                         index=np.arange(len(channel_count)),
                                         columns=[2, 3])
                    group['channel'] = channel_count.index
                    group.set_index('channel', inplace=True)
                group = group.rename(columns={2: "probation", 3: "drop"})

                list_name = group.columns.tolist()
                group = pd.merge(channel_count,
                                 group,
                                 left_index=True,
                                 right_index=True,
                                 how='inner')
                group.rename(columns={group.columns[0]: "all"}, inplace=True)
                all_admission = group['all'].sum()
                for name in list_name:
                    group['per_Type_' + str(name)] = group.apply(
                        lambda row: (row[name] / row['all']) * 100, axis=1)
                    group['per_Stu_' + str(name)] = group.apply(
                        lambda row: (row[name] / all_student) * 100, axis=1)

                group['per_all_student'] = (group['all'] / all_admission) * 100
                group = group.round(2).sort_index()

                group_check_index = analyze_helper.check_list(
                    channel_data.index, group)
                group_fullname = analyze_helper.set_fullname_index(
                    channel_dict, group_check_index)
                value = {
                    'branch': branch_list,
                    'count_by_brance': group_brance.to_dict('index'),
                    'all_student': str(all_student),
                    'table': group_check_index.to_dict('index'),
                    'table_count': table_count,
                }
                response = True
                message = "Don't have Data"
            else:
                value = {}
                response = False
                message = "Don't have Data"

        else:
            value = {}
            response = False
            message = "Don't have Data"
        return inner_res_helper.make_inner_response(response=response,
                                                    message=message,
                                                    value=value)
Ejemplo n.º 3
0
    def analyze_admission(self, year=None):
        connect = DatabaseHelper()
        data = connect.get_all_admission(year)
        value = {}

        if data['value']:

            df = pd.DataFrame(data['value'])
            # real data
            # deparment = connect.get_department()
            # deparment = pd.io.json.json_normalize(deparment['value'], max_level=0)
            # # branch_data = analyze_helper.set_branch(branch['value'])
            # deparment_data = deparment[['dept_id','dept_name']]
            # deparment_data.set_index('dept_id',inplace=True)

            deparment = connect.get_department_ds()
            deparment_data = pd.DataFrame(deparment['value'])
            deparment_data = deparment_data[['dept_id', 'dept_name']]
            deparment_data.set_index('dept_id', inplace=True)

            status_data = analyze_helper.set_fullname(
                connect.get_status_list())
            channel_data = analyze_helper.set_fullname(
                connect.get_admission_channel())
            channel_sample = self.split_channel(channel_data)

            ###check duplicate channel anme
            dupli_channel = channel_sample.channel_name.duplicated(keep=False)
            channel_sample.loc[dupli_channel, 'channel_name'] = channel_sample.loc[dupli_channel, 'channel_name'] + ' (' + \
                                                            channel_sample['channel_round'] + ')'
            channel_sample_for_dict = channel_sample[['channel_name']]
            round_data = channel_sample[['round_id', 'round_name']]

            school = analyze_helper.set_fullname(connect.get_school_lis())
            deparment_dict = analyze_helper.set_dict(deparment_data.index,
                                                     deparment_data.dept_name)
            school_dict = analyze_helper.set_dict(school.index,
                                                  school.school_title)
            status_dic = analyze_helper.set_dict(status_data.index,
                                                 status_data.status_title)
            channel_dic = analyze_helper.set_dict(
                channel_sample_for_dict.index,
                channel_sample_for_dict.channel_name)

            data_split_now = df.copy()
            data_not_year = df.copy()

            if year:
                data_split_now = df.loc[df['admission_year'] == int(year)]

            round_list = channel_sample['round_id'].unique().tolist()

            data_not_none = data_split_now.dropna()
            gpa_by_branch = []
            response_round = False
            for i in round_list:
                gpa_by_count = {}
                channel_list = channel_sample[channel_sample['round_id'] == i]
                list_channel = channel_list.index.tolist()
                if (not data_not_none.empty):
                    count_by_branch = data_not_none['channel_id'].isin(
                        list_channel)
                    count_by_branch = data_not_none[count_by_branch]
                    count_by_branch = count_by_branch.groupby([
                        'channel_id', 'dept_id'
                    ])['current_gpax'].mean().unstack(fill_value=0)
                    count_by_branch = count_by_branch.round(2)
                    count_by_branch_check_branch = analyze_helper.check_list_column(
                        deparment_data.index, count_by_branch)
                    count_by_branch_check_channel = analyze_helper.check_list(
                        channel_list.index, count_by_branch_check_branch)
                    check_by_round_channel = analyze_helper.set_fullname_column(
                        deparment_dict, count_by_branch_check_branch)
                    check_by_round_channel = analyze_helper.set_fullname_index(
                        channel_dic, check_by_round_channel)
                    gpa_by_count[
                        'gpa_by_branch'] = check_by_round_channel.to_dict(
                            'index')
                    gpa_by_branch.append(gpa_by_count)
                    response_round = True

            count_channel = data_split_now.groupby('channel_id').size()
            count_channel_check_channel = analyze_helper.check_list(
                channel_sample.index, count_channel)
            count_channel_check_channel = analyze_helper.set_fullname_index(
                channel_dic, count_channel_check_channel)

            count_school = data_split_now.school_id.value_counts()
            sort_count_school = count_school.sort_values(
                ascending=False).head()
            sort_count_school_fullname = analyze_helper.set_fullname_index(
                school_dict, sort_count_school)

            count_by_status = data_split_now.groupby(
                ['channel_id', 'status_id']).size().unstack(fill_value=0)
            count_by_status_check_status = analyze_helper.check_list_column(
                status_data.index, count_by_status)
            count_by_status_check_channel = analyze_helper.check_list(
                channel_sample.index, count_by_status_check_status)
            count_by_status_fullname = analyze_helper.set_fullname_column(
                status_dic, count_by_status_check_channel)
            count_by_status_fullname = analyze_helper.set_fullname_index(
                channel_dic, count_by_status_fullname)

            # used year and branch but used year and year-1
            year_select = []
            if year:
                year_select.append(int(year))
                year_select.append(int(year) - 1)
            else:
                max_year = data_not_year.admission_year.max()
                year_select.append(max_year)
                year_select.append(max_year - 1)
            data_compare = data_not_year[data_not_year['admission_year'].isin(
                year_select)]
            compare_year = data_compare.groupby(
                ['channel_id', 'admission_year']).size().unstack(fill_value=0)

            if compare_year.empty:
                channel_name = channel_sample['channel_name'].unique().tolist()
                compare_year_success = pd.DataFrame(0,
                                                    index=np.arange(
                                                        len(channel_name)),
                                                    columns=year_select)
                compare_year_success['channel_name'] = channel_name
                compare_year_success.set_index('channel_name', inplace=True)
            else:
                compare_year_check_channel = analyze_helper.check_list(
                    channel_sample.index, compare_year)
                compare_year_success = analyze_helper.check_list_column(
                    year_select, compare_year_check_channel)
                compare_year_success = analyze_helper.set_fullname_index(
                    channel_dic, compare_year_success)

            value = {
                'count_channel': count_channel_check_channel.to_dict(),
                'count_by_branch': dict(zip(round_list, gpa_by_branch)),
                'count_by_school': [sort_count_school_fullname.to_dict()],
                'compare_year': [compare_year_success.to_dict('index')],
                'count_by_status': [count_by_status_fullname.to_dict('index')],
                'response_round': response_round
            }
            response = True
            message = "Analyze Successfully"
        else:
            response = False
            message = "Don't have Data"
        return inner_res_helper.make_inner_response(response=response,
                                                    message=message,
                                                    value=value)
Ejemplo n.º 4
0
    def analyze_admission_admin(self, year=None):
        connect = DatabaseHelper()
        data = connect.get_all_admission_admin(year)
        value = {}
        if data['value']:
            df = pd.DataFrame(data['value'])
            df = df[df['admission_year'] == int(year)]
            if not df.empty:
                branch = connect.get_branch()
                branch_data = analyze_helper.set_branch(branch['value'])
                branch_dict = analyze_helper.set_dict(branch_data.index,
                                                      branch_data.branch_name)
                channel_data = analyze_helper.set_fullname(
                    connect.get_admission_channel())
                channel_sample = self.split_channel(channel_data)

                data_split = self.split_channel(df)
                channel_round = channel_sample.channel_round.drop_duplicates(
                ).to_list()
                analyze_by_round = []
                for i in channel_round:
                    analyze_by_round_s = {}
                    data_in_round = data_split[data_split['channel_round'] ==
                                               i]

                    if data_in_round.empty:
                        data_channel_sample = channel_sample[
                            channel_sample['channel_round'] == i]
                        data_group = data_channel_sample.groupby(
                            ['channel_round',
                             'channel_name']).size().unstack(fill_value=0)
                        data_group.iloc[:] = 0
                        data_group.reset_index(inplace=True)
                        name = data_group.iloc[0, 0]
                        data_group = data_group.drop(columns=['channel_round'])
                        analyze_by_round_s['name'] = name
                        analyze_by_round_s['analyze'] = data_group.to_dict(
                            'index')

                    else:
                        data_group = data_in_round.groupby(
                            ['channel_round',
                             'channel_name']).size().unstack(fill_value=0)
                        channel_sample_selector = (channel_sample[
                            channel_sample['channel_round'] == i])
                        data_group_check_channel = analyze_helper.check_list_column(
                            channel_sample_selector.channel_name, data_group)
                        data_group_check_channel.reset_index(inplace=True)
                        name = data_group_check_channel.iloc[0, 0]
                        data_group_check_channel = data_group_check_channel.drop(
                            columns=['channel_round'])

                        analyze_by_round_s['name'] = name
                        analyze_by_round_s[
                            'analyze'] = data_group_check_channel.to_dict(
                                'index')
                    analyze_by_round.append(analyze_by_round_s)
                value = {'analyze_by_round': analyze_by_round}
                response = True
                message = "Analyze Successfully"
            else:
                value = {}
                response = False
                message = "Don't have Data"
        else:
            value = {}
            response = False
            message = "Don't have Data"
        return inner_res_helper.make_inner_response(response=response,
                                                    message=message,
                                                    value=value)