Ejemplo n.º 1
0
def test_edge_softmax(g, norm_by, shp, idtype):
    g = g.astype(idtype).to(F.ctx())
    edata = F.tensor(np.random.rand(g.number_of_edges(), *shp))
    e1 = F.attach_grad(F.clone(edata))

    with F.record_grad():
        score1 = edge_softmax(g, e1, norm_by=norm_by)
        F.backward(F.reduce_sum(score1))
        grad_edata = F.grad(e1)

    with F.record_grad():
        e2 = F.attach_grad(F.clone(edata))
        e2_2d = F.reshape(
            e2,
            (g.number_of_src_nodes(), g.number_of_dst_nodes(), *e2.shape[1:]))
        if norm_by == 'src':
            score2 = F.softmax(e2_2d, 1)
            score2 = F.reshape(score2, (-1, *e2.shape[1:]))
        if norm_by == 'dst':
            score2 = F.softmax(e2_2d, 0)
            score2 = F.reshape(score2, (-1, *e2.shape[1:]))
        assert F.allclose(score1, score2)
        print('forward passed')

        F.backward(F.reduce_sum(score2))
        assert F.allclose(F.grad(e2), grad_edata)
        print('backward passed')
Ejemplo n.º 2
0
def test_softmax_edges():
    # test#1: basic
    g0 = dgl.DGLGraph(nx.path_graph(10))

    feat0 = F.randn((g0.number_of_edges(), 10))
    g0.edata['x'] = feat0
    ground_truth = F.softmax(feat0, dim=0)
    assert F.allclose(dgl.softmax_edges(g0, 'x'), ground_truth)
    g0.edata.pop('x')

    # test#2: batched graph
    g1 = dgl.DGLGraph(nx.path_graph(5))
    g2 = dgl.DGLGraph(nx.path_graph(3))
    g3 = dgl.DGLGraph()
    g4 = dgl.DGLGraph(nx.path_graph(10))
    bg = dgl.batch([g0, g1, g2, g3, g4])
    feat1 = F.randn((g1.number_of_edges(), 10))
    feat2 = F.randn((g2.number_of_edges(), 10))
    feat4 = F.randn((g4.number_of_edges(), 10))
    bg.edata['x'] = F.cat([feat0, feat1, feat2, feat4], 0)
    ground_truth = F.cat([
        F.softmax(feat0, 0),
        F.softmax(feat1, 0),
        F.softmax(feat2, 0),
        F.softmax(feat4, 0)
    ], 0)
    assert F.allclose(dgl.softmax_edges(bg, 'x'), ground_truth)
Ejemplo n.º 3
0
Archivo: test_nn.py Proyecto: zwcdp/dgl
def test_edge_softmax():
    # Basic
    g = dgl.DGLGraph(nx.path_graph(3))
    edata = F.ones((g.number_of_edges(), 1))
    a = nn.edge_softmax(g, edata)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    assert F.allclose(a, uniform_attention(g, a.shape))

    # Test higher dimension case
    edata = F.ones((g.number_of_edges(), 3, 1))
    a = nn.edge_softmax(g, edata)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    assert F.allclose(a, uniform_attention(g, a.shape))

    # Test both forward and backward with PyTorch built-in softmax.
    g = dgl.DGLGraph()
    g.add_nodes(30)
    # build a complete graph
    for i in range(30):
        for j in range(30):
            g.add_edge(i, j)

    score = F.randn((900, 1))
    score.requires_grad_()
    grad = F.randn((900, 1))
    y = F.softmax(score.view(30, 30), dim=0).view(-1, 1)
    y.backward(grad)
    grad_score = score.grad
    score.grad.zero_()
    y_dgl = nn.edge_softmax(g, score)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    # check forward
    assert F.allclose(y_dgl, y)
    y_dgl.backward(grad)
    # checkout gradient
    assert F.allclose(score.grad, grad_score)
    print(score.grad[:10], grad_score[:10])
    
    # Test 2
    def generate_rand_graph(n):
      arr = (sp.sparse.random(n, n, density=0.1, format='coo') != 0).astype(np.int64)
      return dgl.DGLGraph(arr, readonly=True)
    
    g = generate_rand_graph(50)
    a1 = F.randn((g.number_of_edges(), 1)).requires_grad_()
    a2 = a1.clone().detach().requires_grad_()
    g.edata['s'] = a1
    g.group_apply_edges('dst', lambda edges: {'ss':F.softmax(edges.data['s'], 1)})
    g.edata['ss'].sum().backward()
    
    builtin_sm = nn.edge_softmax(g, a2)
    builtin_sm.sum().backward()
    print(a1.grad - a2.grad)
    assert len(g.ndata) == 0
    assert len(g.edata) == 2
    assert F.allclose(a1.grad, a2.grad, rtol=1e-4, atol=1e-4) # Follow tolerance in unittest backend
Ejemplo n.º 4
0
def softmax(x):
    #assert x.ndim==2    # todo
    if x.ndim == 2:
        return K.softmax(x)
    if x.ndim > 2:
        shape = x.shape
        x_flatten = x.reshape((K.prod(shape[0:-1]), shape[-1]))
        return K.softmax(x_flatten).reshape(shape)
Ejemplo n.º 5
0
def softmax(x):
    """x can be tensor
    """
    if x.ndim == 2:
        return K.softmax(x)
    if x.ndim > 2:
        shape = x.shape
        x_flatten = x.reshape((K.prod(shape[0:-1]), shape[-1]))
        return K.softmax(x_flatten).reshape(shape)
Ejemplo n.º 6
0
def softmax( x ):
    """x can be tensor
    """
    if x.ndim==2:
        return K.softmax( x )
    if x.ndim>2:
        shape = x.shape
        x_flatten = x.reshape( ( K.prod(shape[0:-1]), shape[-1] ) )
        return K.softmax( x_flatten ).reshape( shape )
Ejemplo n.º 7
0
 def _test(group_by):
     g.group_apply_edges(group_by=group_by, func=edge_udf)
     if group_by == 'src':
         u, v, eid = g.out_edges(1, form='all')
     else:
         u, v, eid = g.in_edges(5, form='all')
     out_feat = g.edges[eid].data['norm_feat']
     result = (g.nodes[u].data['h'] + g.nodes[v].data['h']) * g.edges[eid].data['feat']
     result = F.softmax(F.sum(result, dim=1), dim=0)
     assert F.allclose(out_feat, result)
Ejemplo n.º 8
0
def test_softmax(g, idtype):
    g = g.astype(idtype).to(F.ctx())
    g.ndata['h'] = F.randn((g.number_of_nodes(), 3))
    g.edata['h'] = F.randn((g.number_of_edges(), 2))

    # Test.1: node readout
    x = dgl.softmax_nodes(g, 'h')
    subg = dgl.unbatch(g)
    subx = []
    for sg in subg:
        subx.append(F.softmax(sg.ndata['h'], dim=0))
    assert F.allclose(x, F.cat(subx, dim=0))

    # Test.2: edge readout
    x = dgl.softmax_edges(g, 'h')
    subg = dgl.unbatch(g)
    subx = []
    for sg in subg:
        subx.append(F.softmax(sg.edata['h'], dim=0))
    assert F.allclose(x, F.cat(subx, dim=0))
Ejemplo n.º 9
0
def softmax(x):
    ndim = K.ndim(x)
    if ndim == 2:
        return K.softmax(x)
    elif ndim == 3:
        e = K.exp(x - K.max(x, axis=-1, keepdims=True))
        s = K.sum(e, axis=-1, keepdims=True)
        return e / s
    else:
        raise ValueError('Cannot apply softmax to a tensor '
                         'that is not 2D or 3D. '
                         'Here, ndim=' + str(ndim))
Ejemplo n.º 10
0
def test_edge_softmax2(idtype, g):
    g = g.astype(idtype).to(F.ctx())
    g = g.local_var()
    g.srcdata.clear()
    g.dstdata.clear()
    g.edata.clear()
    a1 = F.randn((g.number_of_edges(), 1)).requires_grad_()
    a2 = a1.clone().detach().requires_grad_()
    g.edata['s'] = a1
    g.group_apply_edges('dst', lambda edges: {'ss':F.softmax(edges.data['s'], 1)})
    g.edata['ss'].sum().backward()
    
    builtin_sm = nn.edge_softmax(g, a2)
    builtin_sm.sum().backward()
    #print(a1.grad - a2.grad)
    assert len(g.srcdata) == 0
    assert len(g.dstdata) == 0
    assert len(g.edata) == 2
    assert F.allclose(a1.grad, a2.grad, rtol=1e-4, atol=1e-4) # Follow tolerance in unittest backend
    """
Ejemplo n.º 11
0
def test_edge_softmax(idtype):
    # Basic
    g = dgl.graph(nx.path_graph(3))
    g = g.astype(idtype).to(F.ctx())
    edata = F.ones((g.number_of_edges(), 1))
    a = nn.edge_softmax(g, edata)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    assert F.allclose(a, uniform_attention(g, a.shape))

    # Test higher dimension case
    edata = F.ones((g.number_of_edges(), 3, 1))
    a = nn.edge_softmax(g, edata)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    assert F.allclose(a, uniform_attention(g, a.shape))

    # Test both forward and backward with PyTorch built-in softmax.
    g = dgl.rand_graph(30, 900)
    g = g.astype(idtype).to(F.ctx())

    score = F.randn((900, 1))
    score.requires_grad_()
    grad = F.randn((900, 1))
    y = F.softmax(score.view(30, 30), dim=0).view(-1, 1)
    y.backward(grad)
    grad_score = score.grad
    score.grad.zero_()
    y_dgl = nn.edge_softmax(g, score)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    # check forward
    assert F.allclose(y_dgl, y)
    y_dgl.backward(grad)
    # checkout gradient
    assert F.allclose(score.grad, grad_score)
    print(score.grad[:10], grad_score[:10])
Ejemplo n.º 12
0
 def edge_udf(edges):
     h = F.sum(edges.data['feat'] * (edges.src['h'] + edges.dst['h']),
               dim=2)
     normalized_feat = F.softmax(h, dim=1)
     return {"norm_feat": normalized_feat}
Ejemplo n.º 13
0
Archivo: test_nn.py Proyecto: zwwlp/dgl
def test_edge_softmax():
    # Basic
    g = dgl.DGLGraph(nx.path_graph(3)).to(F.ctx())
    edata = F.ones((g.number_of_edges(), 1))
    a = nn.edge_softmax(g, edata)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    assert F.allclose(a, uniform_attention(g, a.shape))

    # Test higher dimension case
    edata = F.ones((g.number_of_edges(), 3, 1))
    a = nn.edge_softmax(g, edata)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    assert F.allclose(a, uniform_attention(g, a.shape))

    # Test both forward and backward with Tensorflow built-in softmax.
    g = dgl.DGLGraph().to(F.ctx())
    g.add_nodes(30)
    # build a complete graph
    for i in range(30):
        for j in range(30):
            g.add_edge(i, j)

    score = F.randn((900, 1))
    with tf.GradientTape() as tape:
        tape.watch(score)
        grad = F.randn((900, 1))
        y = tf.reshape(F.softmax(tf.reshape(score, (30, 30)), dim=0), (-1, 1))
        grads = tape.gradient(y, [score])
        grad_score = grads[0]

    with tf.GradientTape() as tape:
        tape.watch(score)
        y_dgl = nn.edge_softmax(g, score)
        assert len(g.ndata) == 0
        assert len(g.edata) == 0
        # check forward
        assert F.allclose(y_dgl, y)
        grads = tape.gradient(y_dgl, [score])
    # checkout gradient
    assert F.allclose(grads[0], grad_score)
    print(grads[0][:10], grad_score[:10])

    # Test 2
    def generate_rand_graph(n):
        arr = (sp.sparse.random(n, n, density=0.1, format='coo') != 0).astype(
            np.int64)
        return dgl.DGLGraph(arr, readonly=True)

    g = generate_rand_graph(50).to(F.ctx())
    a1 = F.randn((g.number_of_edges(), 1))
    a2 = tf.identity(a1)
    with tf.GradientTape() as tape:
        tape.watch(a1)
        g.edata['s'] = a1
        g.group_apply_edges(
            'dst', lambda edges: {'ss': F.softmax(edges.data['s'], 1)})
        loss = tf.reduce_sum(g.edata['ss'])
        a1_grad = tape.gradient(loss, [a1])[0]

    with tf.GradientTape() as tape:
        tape.watch(a2)
        builtin_sm = nn.edge_softmax(g, a2)
        loss = tf.reduce_sum(builtin_sm)
        a2_grad = tape.gradient(loss, [a2])[0]
    print(a1_grad - a2_grad)
    assert len(g.ndata) == 0
    assert len(g.edata) == 2
    assert F.allclose(a1_grad, a2_grad, rtol=1e-4,
                      atol=1e-4)  # Follow tolerance in unittest backend