def __init__(self): self.dataclose = self.datas[0].close self.order = None #self.macd = bt.indicators.MACD(self.datas[0]) #self.sma05 = btind.SMA(self.datas[0],period = self.params.mapperiod,subplot=False) self.sma20 = btind.SMA(self.datas[0], period=self.params.mapperiod02, subplot=False) self.bbrands = btind.BBands(self.datas[0], subplot=False) self.max20 = bt.talib.MAX(self.datas[0], period=self.params.mapperiod02, plot=False) self.min20 = bt.talib.MIN(self.datas[0], period=self.params.mapperiod02, plot=False) self.atr = btind.ATR(self.datas[0], plot=False) self.signaltop = btind.CrossOver(self.dataclose, self.bbrands.top, plot=False) self.signalcrossover = btind.CrossOver(self.dataclose, self.sma20, plot=False) self.signallow = btind.CrossOver(self.datas[0], self.bbrands.bot) self.signaltop = btind.CrossOver(self.datas[0], self.bbrands.top) self.buyprice = None self.buycomm = None
def __init__(self): super().__init__(verbose=self.p.verbose) if self.p.verbose: log.setLevel(logging.DEBUG) self.hlc3 = (self.data.high + self.data.low + self.data.close)/3 self.baseline = btind.WMA(self.hlc3, period = self.p.wma_period) # self.exit = btind.HMA(self.hlc3, period = self.p.hma_period) self.atr = btind.ATR(self.data, period=self.p.atr_period) # self.stddev = btind.StdDev(self.data.close, period=self.p.stddev_period) #self.highest = btind.Highest(self.data.high, period=self.p.squeeze_period, plot=False) #self.lowest = btind.Lowest(self.data.low, period=self.p.squeeze_period, plot=False) #self.sma = btind.MovAv.SMA(self.data.close, period=self.p.squeeze_period, plot=False) #self.mean = (self.highest + self.lowest + self.sma) / 3.0 #self.squeeze = btind.MovAv.SMA((self.data.close - self.mean) / self.data.close, period=self.p.squeeze_period, plot=True, subplot=True) self.squeeze = JackVortex(squeeze_period=self.p.squeeze_period) # self.macd = btind.MACDHisto(self.data.close, period_me1=self.p.macd_fast_period, # period_me2=self.p.macd_slow_period, period_signal=self.p.macd_signal_period) # self.macd_ema = btind.MovAv.EMA(self.data.close, period=self.p.macd_ema_period) self.stage = self.Start self.main_order = None self.stop_order = None self.limit_order = None self.exit_order = None self.main_order_price = None self.target1_price = None self.size = None self.symbol_parameter = SymbolParameter(self.p.symbol, self.broker.get_cash(), self.p.max_loss_percent)
def __init__(self): self.dataclose = self.datas[0].close self.order = None #self.macd = bt.indicators.MACD(self.datas[0]) #self.sma05 = btind.SMA(self.datas[0],period = self.params.mapperiod,subplot=False) self.sma20 = btind.SMA(self.datas[0], period=self.params.mapperiod02, subplot=False) self.bbrands = btind.BBands(self.datas[0], subplot=False) self.max55 = bt.talib.MAX(self.datas[0].high, period=self.params.mapperiod, plot=False) self.min55 = bt.talib.MIN(self.datas[0].low, period=self.params.mapperiod, plot=False) self.atr = btind.ATR(self.datas[0]) self.stake = 4000 self.ownprice = 0 ## self.signaltop = btind.CrossOver(self.dataclose,self.bbrands.top,plot=False) self.buyprice = None self.buycomm = None
def __init__(self): self.inds = {} for d in self.datas: self.inds[d] = {} self.inds[d]['fast_ema'] = btind.EMA( period=self.p.trend_filter_fast_period) self.inds[d]['slow_ema'] = btind.EMA( period=self.p.trend_filter_slow_period) self.inds[d]['long_filter'] = self.inds[d]['fast_ema'] > self.inds[ d]['slow_ema'] self.inds[d]['dc'] = DonchianChannels( period=self.p.donchian_channel_period) self.inds[d]['atr'] = btind.ATR( period=self.p.trailing_stop_atr_period)
def __init__(self): super().__init__() # self.ema_short = btind.MovAv.EMA(self.data.close, period=self.p.ema_short_period) self.atr = btind.ATR(self.data, period=self.p.atr_period) self.stddev = btind.StdDev(self.data.close, period=self.p.stddev_period) self.highest = btind.Highest(self.data.high, period=self.p.squeeze_period, plot=False) self.lowest = btind.Lowest(self.data.low, period=self.p.squeeze_period, plot=False) self.sma = btind.MovAv.SMA(self.data.close, period=self.p.squeeze_period, plot=False) self.mean = ((self.highest + self.lowest) / 2.0 + self.sma) / 2.0 self.squeeze = btind.MovAv.SMA( (self.data.close - self.mean) / self.data.close, period=self.p.squeeze_period) # self.macd_fast = btind.MovAv.EMA(self.data.close, period=self.p.macd_fast_period, plot=False) # self.macd_slow = btind.MovAv.EMA(self.data.close, period=self.p.macd_slow_period, plot=False) # self.macd = self.macd_fast - self.macd_slow # self.macd_signal = btind.MovAv.EMA(self.macd, period=self.p.macd_signal_period, plot=False) # self.macd_histogram = self.macd - self.macd_signal self.macd = btind.MACDHisto(self.data.close, period_me1=self.p.macd_fast_period, period_me2=self.p.macd_slow_period, period_signal=self.p.macd_signal_period) self.macd_ema = btind.MovAv.EMA(self.data.close, period=self.p.macd_ema_period) self.stage = self.Start self.main_order = None self.stop_order = None self.limit_order = None self.exit_order = None self.main_order_price = None self.target1_price = None self.size = None self.symbol_parameter = SymbolParameter(self.p.symbol, self.broker.get_cash(), self.p.max_loss_percent)
def __init__(self): super().__init__() # indicators self.atr = btind.ATR(self.data, period=self.p.atr_period) self.hlc3 = (self.data.high + self.data.low + self.data.close) / 3 self.baseline = btind.WMA(self.hlc3, period=self.p.baseline_period) self.highest_close = btind.Highest(self.data.close, period=self.p.breakout_period) self.lowest_close = btind.Lowest(self.data.close, period=self.p.breakout_period) self.stage = self.Start self.main_order = None self.stop_order = None self.limit_order = None self.exit_order = None self.main_order_price = None self.target1_price = None self.size = None self.symbol_parameter = SymbolParameter(self.p.symbol, self.broker.get_cash(), self.p.max_loss_percent)
def __init__(self): #Set program start time start_time=datetime.now().time() print('Program start at {}'.format(start_time)) print('Program time period: {} to {}'.format( UserInputs.model_params().get('start_date'), UserInputs.model_params().get('end_date'))) print('Program Parameters: {}'.format(self.params._getitems())) #initialize counters for prenext/next self.nextcounter = 0 self.counter = 0 self.prenext_done = False self.target_short_price = 0 self.target_long_price = 0 self.pos = 0 self.cash_avail = 0 self.data_live = False #Define dictionaries and lists to be accessed from all timeframes self.inds = dict() self.rnghigh_dict = dict() self.rnglow_dict= dict() self.stop_dict = defaultdict(list) self.target_long_dict = defaultdict(list) self.target_short_dict = defaultdict(list) self.size_dict = defaultdict(list) self.inorder_dict = defaultdict(list) #Create/Instantiate objects to access user input parameters self.modelp = UserInputs.model_params() #Determine interval for timeframe looping if not self.modelp.get('live_status'): datalist = UserInputs.datalist('hist') self.data_feed_count = len(self.datas) self.ticker_count = len(datalist) self.number_timeframes = int(self.data_feed_count/self.ticker_count) #Needs to be an integer elif self.modelp.get('live_status'): ibdatalist = UserInputs.datalist('ib') self.data_feed_count = len(self.datas) self.ticker_count = len(ibdatalist) self.number_timeframes = int(self.data_feed_count/self.ticker_count) #Needs to be an integer self.minimum_data = int(self.ticker_count * self.modelp.get('timeframe2')/self.modelp.get('timeframe0')) #since iterating over 5 min periods, and longest timeframe is 1 hour, there are 12 5 min periods in an hour #Determine # of base timeframe periods within trading day self.intraday_periods = int(390/self.modelp.get('timeframe0')) #************************INITITIALIZE INDICATORS********************************************************* #Initialize dictionary's for i, d in enumerate(self.datas): print("Datas in Strategy {}".format(d._name)) #Initialize dictionaries by appending 0 value self.inds[d._name] = dict() #Dict for all indicators self.stop_dict[d._name].append(0) self.target_long_dict[d._name].append(0) self.target_short_dict[d._name].append(0) self.size_dict[d._name].append(0) #Need to append twice to reference 2nd to last value at start self.size_dict[d._name].append(0) self.inorder_dict[d._name].append(False) #Get available cash self.cash_avail = self.broker.getcash() #Instantiate exact data references (can't loop or will only spit out last value) if d._name == 'TICK-NYSE0': self.tick_close = d.close if d._name == 'SPY0': self.spy_close = d.close #Calculate VWAP self.inds[d._name]['vwap'] = btind.vwap(d, plot=True) #Determine on balance volume self.inds[d._name]['obv'] = btind.obv(d, period=self.p.obv, plot=True) #Determine current ohlcv bars self.inds[d._name]['ohlc'] = btind.ohlc(d, period=self.p.ohlc, plot=False) #Determine same bar, prior day self.inds[d._name]['priorday'] = btind.priorday(d, plot=False) """ #Determine opening gap and opening hi/low range (defined by b_time parameter) self.inds[d._name]['gap'] = btind.gap(d, period=self.p.breakout_per, plot=False) """ #AVERAGE TRUE RANGE INDICATOR self.inds[d._name]['atr'] = btind.ATR(d, period=self.p.atrperiod, plot=False) self.inds[d._name]['atr_stop'] = btind.atr_stop(d,self.inds[d._name]['atr'], atrdist = self.p.atrdist, dollars_risked = self.p.total_dollars_risked, dollars_per_trade = self.p.dollars_risked_per_trade, plot=False) """ #Moving Average Indicators - FAST, SLOW, and CROSS self.inds[d._name]['sma1'] = btind.SMA(d, period=self.p.sma1, plot=False) self.inds[d._name]['sma2'] = btind.SMA(d, period=self.p.sma2, plot=False) self.inds[d._name]['ema1'] = btind.EMA(d, period=self.p.ema1, plot=True) self.inds[d._name]['ema2'] = btind.EMA(d, period=self.p.ema2, plot=True) self.inds[d._name]['cross'] = btind.CrossOver(self.inds[d._name]['ema1'], self.inds[d._name]['ema2'], plot=False) #RSI self.inds[d._name]['rsi']= btind.RSI(d, safediv=True, plot=False) #Bollinger Band self.inds[d._name]['bollinger'] = btind.BollingerBands(d, period=self.p.bollinger_period, devfactor = self.p.bollinger_dist'), plot=False) #Stochastics - just prints Slow %d line (not %K also which would be "StochasticFast") self.inds[d._name]['stochastic'] = btind.StochasticSlow(d, period=self.p.stoch_per, period_dfast= self.p.stoch_fast, safediv=True, plot=False) #ADX self.inds[d._name]['adx'] = btind.ADX(d, period=self.p.adx, plot=False) #Pivots self.inds[d._name]['pivots'] = btind.pivotpoint.PivotPoint(d, plot=False) #Highest and Lowest Values of Period Indicator self.inds[d._name]['highest'] = btind.Highest(d.high, period=self.p.breakout_per, plot=False) self.inds[d._name]['lowest'] = btind.Lowest(d.low, period=self.p.breakout_per, plot=False) """ #Slope indicators self.inds[d._name]['slope']= btind.Slope(d.close, period=self.p.slope_period, plot=False) self.inds[d._name]['slope_obv'] = btind.Slope(self.inds[d._name]['obv'], period=self.p.slope_period, plot=False) """ self.inds[d._name]['slope_of_slope_obv'] = btind.Slope(self.inds[d._name]['slope_obv'], period=self.p.slope_period, plot=False) self.inds[d._name]['slope_sma1'] = btind.Slope(self.inds[d._name]['sma1'], period=self.p.slope_period, plot=False) self.inds[d._name]['slope_of_slope_sma1'] = btind.Slope(self.inds[d._name]['slope_sma1'], period=self.p.slope_period, plot=False) self.inds[d._name]['slope_of_slope_sma1'] = btind.Slope(self.inds[d._name]['slope_sma1'], period=self.p.slope_period, plot=False) self.inds[d._name]['slope_sma_width'] = btind.Slope(self.inds[d._name]['sma1']-self.inds[d._name]['sma2'], period=self.p.slope_period, plot=False) self.inds[d._name]['slope_adx'] = btind.Slope(self.inds[d._name]['adx'], period=self.p.slope_period, plot=False) self.inds[d._name]['slope_of_slope_adx'] = btind.Slope(self.inds[d._name]['slope_adx'], period=self.p.slope_period, plot=False) self.inds[d._name]['slope_rsi'] = btind.Slope(self.inds[d._name]['rsi'], period=self.p.slope_period, plot=False, plotname = 'Slope_RSI') self.inds[d._name]['slope_of_slope_rsi'] = btind.Slope(self.inds[d._name]['slope_rsi'], period=self.p.slope_period, plot=False, plotname = 'Slope_of_Slope_RSI') self.inds[d._name]['slope_ema1'] = btind.Slope(self.inds[d._name]['ema1'], period=self.p.slope_period, plot=False, plotname = 'Slope_EMA1') self.inds[d._name]['slope_ema2'] = btind.Slope(self.inds[d._name]['ema2'], period=self.p.slope_period, plot=False, plotname = 'Slope_EMA2') """ self.inds[d._name]['resistance'] = btind.Resistance(d, period=self.p.lookback, min_touches = self.p.min_touches, tolerance_perc = self.p.tolerance_perc, bounce_perc = self.p.bounce_perc, plot=True) self.inds[d._name]['support'] = btind.Support(d, period=self.p.lookback, min_touches = self.p.min_touches, tolerance_perc = self.p.tolerance_perc, bounce_perc = self.p.bounce_perc, plot=True) #Calculate Hammer Candle Signal self.inds[d._name]['hammer'] = btind.HammerCandles(d, plot=False) #Calculate Engulfing Candle Signal self.inds[d._name]['engulfing'] = btind.EngulfingCandles(d, plot=False) #Calculate Engulfing Candle Signal self.inds[d._name]['three_line_strike'] = btind.three_line_strike(d, plot=False) #Plot ADX and Stochastic on same subplot as stochastic #self.inds[d._name]['adx'].plotinfo.plotmaster = self.inds[d._name]['stochastic'] print('Start preloading data to meet minimum data requirements')
def __init__(self): #Set program start time start_time=datetime.now().time() print('Program start at {}'.format(start_time)) #print(self.params.sma1, self.p.ema1, self.params.atrperiod) #Proof deep copy worked for params #initialize counters for prenext/next self.nextcounter = 0 self.counter = 0 self.counttostop = 0 self.datastatus = 0 self.prenext_done = False self.bought = 0 self.sold = 0 self.target_long_price = 0 self.target_short_price = 0 self.trade_open_counter = 0 self.trade_close_counter = 0 self.trade_total_counter = 0 self.lost_counter = 0 self.won_counter = 0 #Define dictionaries and lists to be accessed from all timeframes self.atr_list =[] self.inds = dict() self.gap_dict=dict() self.rnghigh_dict = dict() self.rnglow_dict= dict() self.longstop_dict = dict() self.shortstop_dict = dict() self.target_long_dict = dict() self.target_short_dict = dict() self.size_dict = dict() self.inorder_dict = dict() self.sup_dict = dict() self.res_dict = dict() self.pos_dict = defaultdict(list) #Create/Instantiate objects to access user input parameters modelp = UserInputs.model_params() indp = UserInputs.ind_params() datalist = UserInputs.datalist('hist') ibdatalist = UserInputs.datalist('ib') #Determine interval for timeframe looping if not modelp.get('live_status'): data_feed_count = len(self.datas) ticker_count = len(datalist) self.ticker_interval = int(data_feed_count/ticker_count) #Needs to be an integer elif modelp.get('live_status'): data_feed_count = len(self.datas) ticker_count = len(ibdatalist) self.ticker_interval = int(data_feed_count/ticker_count) #Needs to be an integer #************************INITITIALIZE INDICATORS********************************************************* #Initialize dictionary's for x in range(0, len(self.datas), self.ticker_interval): d = self.datas[x] print(d._name) if not (d._name[:-1]=='VIX' or d._name[:-1]=='TICK-NYSE'): #Order dictionaries self.target_long_dict[d._name] = dict() self.target_short_dict[d._name] = dict() self.inorder_dict[d._name] = dict() self.target_long_dict[d._name] = 0 self.target_short_dict[d._name] = 0 self.inorder_dict[d._name] = False for i, d in enumerate(self.datas): if not (d._name[:-1]=='VIX' or d._name[:-1]=='TICK-NYSE'): #Sizing dictionary self.size_dict[d._name] = dict() self.size_dict[d._name] = 0 #For support/resistance dictionaries self.sup_dict[d._name] = dict() self.res_dict[d._name] = dict() self.sup_dict[d._name] = 0 self.res_dict[d._name] = 10000 #For all indicators self.inds[d._name] = dict() #Moving Average Indicators - FAST, SLOW, and CROSS self.inds[d._name]['sma1'] = btind.SMA(d, period=indp.get('sma1'), plot=False) self.inds[d._name]['sma2'] = btind.SMA(d, period=indp.get('sma2'), plot=True) self.inds[d._name]['ema1'] = btind.EMA(d, period=indp.get('ema1'), plot=False) self.inds[d._name]['ema2'] = btind.EMA(d, period=indp.get('ema2'), plot=False) self.inds[d._name]['ema3'] = btind.EMA(d, period=indp.get('ema3'), plot=False) #This will double pre-next self.inds[d._name]['cross'] = btind.CrossOver(self.inds[d._name]['ema2'], self.inds[d._name]['ema3'], plot=False) #RSI self.inds[d._name]['rsi']= btind.RSI(d, safediv=True, plot=True) #AVERAGE TRUE RANGE INDICATOR self.inds[d._name]['atr'] = btind.ATR(d, period=indp.get('atrperiod'), plot=False) #Bollinger Band self.inds[d._name]['bollinger'] = btind.BollingerBands(d, period=indp.get('bollinger_period'), devfactor = indp.get('bollinger_dist'), plot=False) #Stochastics self.inds[d._name]['stochastic'] = btind.StochasticFast(d, period=indp.get('stoch_per'), period_dfast= indp.get('stoch_fast'), safediv=True, plot=True) #ADX self.inds[d._name]['adx'] = btind.ADX(d,plot=True) """ #Pivots self.inds[d._name]['pivots'] = btind.pivotpoint.PivotPoint(d, plot=False) """ #Average Volume Indicator self.inds[d._name]['avg_volume'] = btind.Average(d.volume, period=indp.get('avg_per'), plot=False) #Highest and Lowest Values of Period Indicator self.inds[d._name]['highest'] = btind.Highest(d.high, period=indp.get('breakout_per'), plot=False) self.inds[d._name]['lowest'] = btind.Lowest(d.low, period=indp.get('breakout_per'), plot=False) #Slope indicators self.inds[d._name]['slope']= btind.Slope(d.close, period=indp.get('slope_period'), plot=False) self.inds[d._name]['slope_sma1'] = btind.Slope(self.inds[d._name]['sma1'], period=indp.get('slope_period'), plot=False, plotname = 'Slope_SMA1') self.inds[d._name]['slope_of_slope_sma1'] = btind.Slope(self.inds[d._name]['slope_sma1'], period=indp.get('slope_period'), plot=False, plotname = 'Slope_of_Slope_SMA1') self.inds[d._name]['slope_sma_width'] = btind.Slope(self.inds[d._name]['sma1']-self.inds[d._name]['sma2'], period=indp.get('slope_period'), plot=False, plotname = 'Slope_SMA_WIDTH') self.inds[d._name]['slope_adx'] = btind.Slope(self.inds[d._name]['adx'], period=indp.get('slope_period'), plot=False, plotname = 'Slope_ADX') self.inds[d._name]['slope_of_slope_adx'] = btind.Slope(self.inds[d._name]['slope_adx'], period=indp.get('slope_period'), plot=False, plotname = 'Slope_of_Slope_ADX') self.inds[d._name]['slope_rsi'] = btind.Slope(self.inds[d._name]['rsi'], period=indp.get('slope_period'), plot=False, plotname = 'Slope_RSI') self.inds[d._name]['slope_of_slope_rsi'] = btind.Slope(self.inds[d._name]['slope_rsi'], period=indp.get('slope_period'), plot=False, plotname = 'Slope_of_Slope_RSI') self.inds[d._name]['slope_ema1'] = btind.Slope(self.inds[d._name]['ema1'], period=indp.get('slope_period'), plot=False, plotname = 'Slope_EMA1') self.inds[d._name]['slope_ema2'] = btind.Slope(self.inds[d._name]['ema2'], period=indp.get('slope_period'), plot=False, plotname = 'Slope_EMA2') self.inds[d._name]['slope_ema3'] = btind.Slope(self.inds[d._name]['ema3'], period=indp.get('slope_period'), plot=False, plotname = 'Slope_EMA3') #Plot ADX and Slope on same subplot as stochastic self.inds[d._name]['adx'].plotinfo.plotmaster = self.inds[d._name]['rsi']
def __init__(self): self.atr_base = btind.ATR(period=self.p.period)
def __init__(self): #Set program start time start_time=datetime.now().time() print('Program start at {}'.format(start_time)) #print(self.params.sma1, self.p.ema1, self.params.atrperiod) #Proof deep copy worked for params #initialize counters for prenext/next self.dayperiod = 0 self.nextcounter = 0 self.counter = 0 self.prenext_done = False self.target_short_price = 0 self.target_long_price = 0 self.pos = 0 self.cash_avail = 0 #Define dictionaries and lists to be accessed from all timeframes self.inds = dict() self.gap_dict=dict() self.rnghigh_dict = dict() self.rnglow_dict= dict() self.longstop_dict = dict() self.shortstop_dict = dict() self.target_long_dict = defaultdict(list) self.target_short_dict = defaultdict(list) self.size_dict = defaultdict(list) self.inorder_dict = defaultdict(list) #Create/Instantiate objects to access user input parameters self.modelp = UserInputs.model_params() self.indp = UserInputs.ind_params() datalist = UserInputs.datalist('hist') ibdatalist = UserInputs.datalist('ib') self.data_feed_count = len(self.datas) #Determine interval for timeframe looping if not self.modelp.get('live_status'): self.ticker_count = len(datalist) self.number_timeframes = int(self.data_feed_count/self.ticker_count) #Needs to be an integer elif self.modelp.get('live_status'): self.ticker_count = len(ibdatalist) self.number_timeframes = int(self.data_feed_count/self.ticker_count) #Needs to be an integer self.minimum_data = int(self.ticker_count * self.modelp.get('timeframe2')/self.modelp.get('timeframe0')) #since iterating over 5 min periods, and longest timeframe is 1 hour, there are 12 5 min periods in an hour #Determine # of base timeframe periods within trading day self.intraday_periods = int(390/self.modelp.get('timeframe0')) #************************INITITIALIZE INDICATORS********************************************************* #Initialize dictionary's for i, d in enumerate(self.datas): self.name_t0 = d._name[:-1]+'0' self.name_t1 = d._name[:-1]+'1' self.name_t2 = d._name[:-1]+'2' print('Datas included in Strategy: {}'.format(d._name)) #Initialize dictionaries by appending 0 value self.target_long_dict[d._name].append(0) self.target_short_dict[d._name].append(0) self.size_dict[d._name].append(0) #Need to append twice to reference 2nd to last value self.size_dict[d._name].append(0) self.inorder_dict[d._name].append(False) #Get available cash self.cash_avail = round(self.broker.getcash(),2) #For all indicators self.inds[d._name] = dict() #Determine current and prior day bars self.inds[d._name]['ohlc'] = btind.OHLC(d, period=self.indp.get('ohlc'), plot=False) self.inds[d._name]['prior_ohlc'] = btind.priorday(d, period=self.indp.get('ohlc'), plot=False) #AVERAGE TRUE RANGE INDICATOR self.inds[d._name]['atr'] = btind.ATR(d, period=self.indp.get('atrperiod'), plot=False) #Moving Average Indicators - FAST, SLOW, and CROSS self.inds[d._name]['sma1'] = btind.SMA(d, period=self.indp.get('sma1'), plot=True) self.inds[d._name]['sma2'] = btind.SMA(d, period=self.indp.get('sma2'), plot=True) """ self.inds[d._name]['ema1'] = btind.EMA(d, period=self.indp.get('ema1'), plot=False) self.inds[d._name]['ema2'] = btind.EMA(d, period=self.indp.get('ema2'), plot=False) #This will double pre-next self.inds[d._name]['cross'] = btind.CrossOver(self.inds[d._name]['ema1'], self.inds[d._name]['ema2'], plot=False) #RSI self.inds[d._name]['rsi']= btind.RSI(d, safediv=True, plot=False) #Bollinger Band self.inds[d._name]['bollinger'] = btind.BollingerBands(d, period=self.indp.get('bollinger_period'), devfactor = self.indp.get('bollinger_dist'), plot=False) """ #Stochastics - just prints Slow %d line (not %K also which would be "StochasticFast") self.inds[d._name]['stochastic'] = btind.StochasticSlow(d, period=self.indp.get('stoch_per'), period_dfast= self.indp.get('stoch_fast'), safediv=True, plot=True) #ADX self.inds[d._name]['adx'] = btind.ADX(d, period=self.indp.get('adx'), plot=True) """ #Pivots self.inds[d._name]['pivots'] = btind.pivotpoint.PivotPoint(d, plot=False) """ #Highest and Lowest Values of Period Indicator self.inds[d._name]['highest'] = btind.Highest(d.high, period=self.indp.get('breakout_per'), plot=False) self.inds[d._name]['lowest'] = btind.Lowest(d.low, period=self.indp.get('breakout_per'), plot=False) #Slope indicators self.inds[d._name]['slope']= btind.Slope(d.close, period=self.indp.get('slope_period'), plot=False) self.inds[d._name]['slope_sma1'] = btind.Slope(self.inds[d._name]['sma1'], period=self.indp.get('slope_period'), plot=False) self.inds[d._name]['slope_of_slope_sma1'] = btind.Slope(self.inds[d._name]['slope_sma1'], period=self.indp.get('slope_period'), plot=False) """ self.inds[d._name]['slope_of_slope_sma1'] = btind.Slope(self.inds[d._name]['slope_sma1'], period=self.indp.get('slope_period'), plot=False) self.inds[d._name]['slope_sma_width'] = btind.Slope(self.inds[d._name]['sma1']-self.inds[d._name]['sma2'], period=self.indp.get('slope_period'), plot=False) self.inds[d._name]['slope_adx'] = btind.Slope(self.inds[d._name]['adx'], period=self.indp.get('slope_period'), plot=False) self.inds[d._name]['slope_of_slope_adx'] = btind.Slope(self.inds[d._name]['slope_adx'], period=self.indp.get('slope_period'), plot=False) self.inds[d._name]['slope_rsi'] = btind.Slope(self.inds[d._name]['rsi'], period=self.indp.get('slope_period'), plot=False, plotname = 'Slope_RSI') self.inds[d._name]['slope_of_slope_rsi'] = btind.Slope(self.inds[d._name]['slope_rsi'], period=self.indp.get('slope_period'), plot=False, plotname = 'Slope_of_Slope_RSI') self.inds[d._name]['slope_ema1'] = btind.Slope(self.inds[d._name]['ema1'], period=self.indp.get('slope_period'), plot=False, plotname = 'Slope_EMA1') self.inds[d._name]['slope_ema2'] = btind.Slope(self.inds[d._name]['ema2'], period=self.indp.get('slope_period'), plot=False, plotname = 'Slope_EMA2') """ self.inds[d._name]['resistance'] = btind.Resistance(d, period=self.indp.get('lookback'), plot=True) self.inds[d._name]['support'] = btind.Support(d, period=self.indp.get('lookback'), plot=True) if d._name == d._name[:-1]+'0' or d._name == d._name[:-1]+'1': self.inds[d._name]['avgvolume'] = btind.avgvolume(d, period=self.indp.get('avgvolume'), plot=False) if d._name == d._name[:-1]+'0': self.inds[d._name]['priorday'] = btind.priorday(d, period=self.indp.get('priorday'), plot=False) if d._name == d._name[:-1]+'0' or d._name == d._name[:-1]+'1': self.inds[d._name]['vwap'] = btind.vwap(d, period=self.indp.get('vwap_lookback'), plot=True) #Plot ADX and Stochastic on same subplot as stochastic #self.inds[d._name]['adx'].plotinfo.plotmaster = self.inds[d._name]['stochastic'] print('Start preloading data to meet minimum data requirements')
def __init__(self): ATR = btind.ATR() self.l.ATR = ATR self.l.SMMA = btind.SMMA(self.l.ATR, period=self.p.period)