Ejemplo n.º 1
0
def compute_bah(etf,period,cash_sum):
    dca = bah.DCA(period, cash_sum)
    investor = bah.Investor(etf, [1.0], dca)
    sim = bah.BuyAndHoldInvestmentStrategy(investor, 2.)
    sim.invest(df_adj_close[etf])

    return investor
Ejemplo n.º 2
0
def compute_one_etf(etf):
    start_date, end_date = compute_dates(etf)

    print(start_date)
    df_adj_close = load_all_data_from_file('etf_data_adj_close.csv', start_date, end_date)
    dca = bah.DCA(30, 300.)
    investor = bah.Investor(etf, np.full(len(etf), 1.0 / len(etf)), dca)
    sim = bah.BuyAndHoldInvestmentStrategy(investor, 2.)
    sim.invest(df_adj_close[etf])
    investor.compute_means()


    _, ax = plt.subplots(3, 1)
    for rms in investor.rms_list:
        ax[2].plot(rms)

    print('invested:' + str(investor.invested_history[-1]))
    print('value gained:' + str(investor.history[-1]))
    print('ror:' + str(investor.ror_history[-1]))
    print('mean:' + str(investor.m))
    print('std:' + str(investor.std))
    for rms in investor.means:
        print(str(rms))

    #ax[0].plot(np.log(df_adj_close[etf]))
    ax[0].plot(sim.investor.invested_history)
    ax[0].plot(sim.investor.history)
    # ax[0].plot(sim.investor.history)
    ax[1].plot(sim.investor.ror_history)
    ax[0].legend(['nav', 'invested', 'value'])
    ax[1].legend(['RoR'])

    plt.show()
Ejemplo n.º 3
0
def compute_one_etf(etf, inception, results):
    print(etf)
    result = etf[0]

    if inception is not None:
        inception_date = inception[inception.ticket ==
                                   etf[0]].inc_date.values[0]
        data = df_adj_close[df_adj_close.Date > inception_date][etf]
    else:
        data = df_adj_close[etf]

    dca = bah.DCA(period, cash_to_invest)
    investor = bah.Investor(etf, [1.0], dca)
    sim = bah.BuyAndHoldInvestmentStrategy(investor, 2.)
    sim.invest(data)
    investor.compute_means()
    result += ';' + str(investor.invested_history[-1])
    result += ';' + str(investor.history[-1])
    result += ';' + str(investor.ror_history[-1])
    result += ';' + str(investor.m)
    result += ';' + str(investor.std)
    for rms in investor.means:
        result += ';' + str(rms)
    result += '\n'
    print(result)

    with open(results, 'a+') as fd:
        fd.write(result)
Ejemplo n.º 4
0
def compute_bah(etf):
    dca = bah.DCA(30, 300.)
    investor = bah.Investor(etf, [1.0], dca)
    sim = bah.BuyAndHoldInvestmentStrategy(investor, 2.)
    sim.invest(df_adj_close[etf])
    investor.compute_means()

    return investor
Ejemplo n.º 5
0
def run_bah_sim(etf,period,cash_sum):
    data = get_data_random_dates()

    dca = bah.DCA(period, cash_sum)
    investor = bah.Investor(etf, [1.0], dca)
    sim = bah.BuyAndHoldInvestmentStrategy(investor, 2.)
    sim.invest(data[etf])

    return investor
Ejemplo n.º 6
0
def run_bah_sim(etf):
    data = get_data_random_dates()

    dca = bah.DCA(30, 300.)
    investor = bah.Investor(etf, [1.0], dca)
    sim = bah.BuyAndHoldInvestmentStrategy(investor, 2.)
    sim.invest(data[etf])
    investor.compute_means()

    return investor
Ejemplo n.º 7
0
def compute_one_etf(etf):

    inception_date = inception[inception.ticket == etf[0]].inc_date.values[0]
    data = df_adj_close[df_adj_close.Date > inception_date][etf]
    dca = bah.DCA(30, 300.)
    investor = bah.Investor(etf, np.full(len(etf), 1.0 / len(etf)), dca)
    sim = bah.BuyAndHoldInvestmentStrategy(investor, 2.)
    sim.invest(data)
    investor.compute_means()
    investor.compute_rank()

    return data, investor
Ejemplo n.º 8
0
def compute_one_etf(etf, data):
    dca = bah.DCA(30, 300.)
    investor = bah.Investor(etf, np.full(len(etf), 1.0 / len(etf)), dca)
    sim = bah.BuyAndHoldInvestmentStrategy(investor, 2.)
    sim.invest(data)
    # _, ax = plt.subplots(3, 1)
    #
    # ax[0].plot(data)
    # ax[1].plot(sim.investor.invested_history)
    # ax[1].plot(sim.investor.history)
    # ax[2].plot(sim.investor.ror_history)
    # ax[0].legend(['nav'])
    # ax[1].legend(['invested', 'value'])
    # ax[2].legend(['Returns'])
    #
    # plt.show()

    return investor
def compute_one_etf():
    global fd
    print(etf)
    result = etf[0] + '+' + etf[1]
    df_open, df_close, df_high, df_low, df_adj_close = load_data(
        etf, start_date, end_date)
    dca = bah.DCA(30, 300.)
    investor = bah.Investor([0.5, 0.5], dca)
    sim = bah.BuyAndHoldInvestmentStrategy(investor, 2.)
    sim.invest(df_adj_close, df_high, df_low)
    means = []
    rms_list = []
    for i in range(1, 11):
        rms = rolling_mean(np.array(sim.investor.ror_history), i * 365)
        m = mean(rms)
        if m > 0:
            rms_list.append(m.round(2))
            means.append(m.round(2))
        else:
            rms_list.append(0.)

    means = np.array(means)
    m = np.mean(means).round(2)
    if np.isnan(m):
        m = 0.
    std = np.std(means).round(2)
    if np.isnan(std):
        std = 0.

    result += ';' + str(sim.investor.invested_history[-1])
    result += ';' + str(sim.investor.history[-1])
    result += ';' + str(sim.investor.ror_history[-1])
    result += ';' + str(m)
    result += ';' + str(std)
    for rms in rms_list:
        result += ';' + str(rms)
    result += '\n'

    with open(results, 'a+') as fd:
        fd.write(result)
Ejemplo n.º 10
0
plt.plot(df_adj_close)
plt.legend(df_adj_close)
plt.show()

reb_inv_list = []

for pc in pc_list:
    print(pc)
    rebalance_inv = rebalancer.simulate(df_adj_close, pc=pc)
    reb_inv_list.append(rebalance_inv)
    rebalancer.writeResults('reb', etf,
                            df_adj_close.tail(1).as_matrix()[0], rebalance_inv)

dca = bah.DCA(30, 300.)
investor = bah.Investor(etf, [1.0], dca)
sim = bah.BuyAndHoldInvestmentStrategy(investor, 2.)
sim.invest(df_adj_close, tickets=etf)

print('B&H')
print('zisk:', investor.history[-1])
print('ror:', investor.ror_history[-1])

interpet_results(reb_inv_list, investor, pc_list)

# dca = bah.DCA(30, 300.)
# investor = bah.Investor(etf[1], [1.0], dca)
# sim = bah.BuyAndHoldInvestmentStrategy(investor, 2.)
# sim.invest(data[etf[1]], [etf[1]])
#
# print('B&H')