Ejemplo n.º 1
0
def test_level_filter_not_matches(logger, caplog):
    enable(logger, level='DEBUG', echo=False)
    logger.addFilter(LevelFilter(logging.DEBUG))

    # does *not* log message at level INFO > DEBUG
    with caplog.at_level(logging.INFO, logger=logger.name):
        logger.info('msg')

    assert not caplog.text
Ejemplo n.º 2
0
def test_level_filter_matches(logger, caplog):
    enable(logger, level='DEBUG', echo=False)
    logger.addFilter(LevelFilter(logging.CRITICAL))

    # does log message at level CRITICAL
    with caplog.at_level(logging.CRITICAL, logger=logger.name):
        logger.critical('msg')

    assert caplog.text
Ejemplo n.º 3
0
#!/usr/bin/env python

if __name__ == '__main__':

    from ballet.util.log import enable
    from ballet.validation.main import validate

    import ames

    enable(level='DEBUG', echo=False)
    validate(ames)
Ejemplo n.º 4
0
def test_logging_context(logger, caplog):
    enable(logger, level='DEBUG', echo=False)
    with caplog.at_level(logging.DEBUG, logger=logger.name):
        with LoggingContext(logger, level='INFO'):
            logger.debug('msg')
    assert not caplog.text
Ejemplo n.º 5
0
def test_enable(logger, caplog, level):
    with caplog.at_level(level, logger=logger.name):
        enable(logger, level, echo=True)
    assert 'enabled' in caplog.text
class RandomValue(BaseTransformer):
    def fit(self, X, y=None):
        return self

    def transform(self, X):
        return np.random.random(X.shape[0])


transformer = RandomValue()
feature = Feature(input=input, transformer=transformer)

if __name__ == "__main__":
    from ballet.util.log import enable
    from ballet.project import Project
    from ballet.validation.main import _load_class
    from ballet_predict_house_prices.features import build
    from ballet_predict_house_prices.load_data import load_data

    enable(level='INFO')

    X_df, y_df = load_data()
    out = build(X_df, y_df)
    X_df, y, features = out.X_df, out.y, out.features

    project = Project.from_path(".")
    Accepter = _load_class(project, 'validation.feature_accepter')

    accepter = Accepter(X_df, y, features, feature)
    assert accepter.judge()