Ejemplo n.º 1
0
  def __init__(self, words, word_vocab, char_vocab, process_words=True, words_tgt=None, word_vocab_vi=None, split='dev'):
    if process_words:
      words = words[:]
      # Fix inconsistent tokenization between datasets
      for i in range(len(words)):
        if (words[i].lower() == '\'t' and i > 0 and
            words[i - 1].lower() in CONTRACTION_WORDS):
          words[i] = words[i - 1][-1] + words[i]
          words[i - 1] = words[i - 1][:-1]

      self.words = ([embeddings.START] +
                    [word_vocab[embeddings.normalize_word(w)] for w in words] +
                    [embeddings.END])

      self.chars = ([[embeddings.MISSING]] +
                    [[char_vocab[c] for c in embeddings.normalize_chars(w)]
                     for w in words] +
                    [[embeddings.MISSING]])
    else:
      words = words[:]

      self.words = ([word_vocab[embeddings.normalize_word(w)] for w in words])

      self.chars = ([[char_vocab[c] for c in embeddings.normalize_chars(w)] for w in words])

      self.words_tgt_in = ([embeddings.START] + [word_vocab_vi[embeddings.normalize_word(w)] for w in words_tgt])
      self.words_tgt_out = ([word_vocab_vi[embeddings.normalize_word(w)] for w in words_tgt] + [embeddings.END])
Ejemplo n.º 2
0
  def __init__(self, words, word_vocab, char_vocab):
    words = words[:]
    # Fix inconsistent tokenization between datasets
    for i in range(len(words)):
      if (words[i].lower() == '\'t' and i > 0 and
          words[i - 1].lower() in CONTRACTION_WORDS):
        words[i] = words[i - 1][-1] + words[i]
        words[i - 1] = words[i - 1][:-1]

    self.words = ([embeddings.START] +
                  [word_vocab[embeddings.normalize_word(w)] for w in words] +
                  [embeddings.END])
    self.chars = ([[embeddings.MISSING]] +
                  [[char_vocab[c] for c in embeddings.normalize_chars(w)]
                   for w in words] +
                  [[embeddings.MISSING]])
Ejemplo n.º 3
0
    def __init__(self, words, word_vocab, char_vocab):
        words = words[:]
        # Fix inconsistent tokenization between datasets
        for i in range(len(words)):
            if (words[i].lower() == '\'t' and i > 0
                    and words[i - 1].lower() in CONTRACTION_WORDS):
                words[i] = words[i - 1][-1] + words[i]
                words[i - 1] = words[i - 1][:-1]

        self.words = (
            [embeddings.START] +
            [word_vocab[embeddings.normalize_word(w)]
             for w in words] + [embeddings.END])
        self.chars = ([[embeddings.MISSING]] +
                      [[char_vocab[c] for c in embeddings.normalize_chars(w)]
                       for w in words] + [[embeddings.MISSING]])
Ejemplo n.º 4
0
def main():
  utils.heading('SETUP')
  config = configure.Config(mode=FLAGS.mode, model_name=FLAGS.model_name)
  config.write()
  if config.mode == 'encode':
    word_vocab = embeddings.get_word_vocab(config)
    sentence = "Squirrels , for example , would show up , look for the peanut , go away .".split()
    sentence = ([word_vocab[embeddings.normalize_word(w)] for w in sentence])
    print(sentence)
    return
  if config.mode == 'decode':
    word_vocab_reversed = embeddings.get_word_vocab_reversed(config)
    sentence = "25709 33 42 879 33 86 304 92 33 676 42 32 13406 33 273 445 34".split()
    sentence = ([word_vocab_reversed[int(w)] for w in sentence])
    print(sentence)
    return
  if config.mode == 'encode-vi':
    word_vocab_vi = embeddings.get_word_vocab_vi(config)
    print(len(word_vocab_vi))
    sentence = "Mỗi_một khoa_học_gia đều thuộc một nhóm nghiên_cứu , và mỗi nhóm đều nghiên_cứu rất nhiều đề_tài đa_dạng .".split()
    sentence = ([word_vocab_vi[embeddings.normalize_word(w)] for w in sentence])
    print(sentence)
    return
  if config.mode == 'decode-vi':
    word_vocab_reversed_vi = embeddings.get_word_vocab_reversed_vi(config)
    sentence = "8976 32085 129 178 17 261 381 5 7 195 261 129 381 60 37 2474 1903 6".split()
    sentence = ([word_vocab_reversed_vi[int(w)] for w in sentence])
    print(sentence)
    return
  if config.mode == 'embed':
    word_embeddings = embeddings.get_word_embeddings(config)
    word = 50
    embed = word_embeddings[word]
    print(' '.join(str(x) for x in embed))
    return
  if config.mode == 'embed-vi':
    word_embeddings_vi = embeddings.get_word_embeddings_vi(config)
    word = 50
    embed = word_embeddings_vi[word]
    print(' '.join(str(x) for x in embed))
    return
  with tf.Graph().as_default() as graph:
    model_trainer = trainer.Trainer(config)
    summary_writer = tf.summary.FileWriter(config.summaries_dir)
    checkpoints_saver = tf.train.Saver(max_to_keep=1)
    best_model_saver = tf.train.Saver(max_to_keep=1)
    init_op = tf.global_variables_initializer()
    graph.finalize()
    with tf.Session() as sess:
      sess.run(init_op)
      progress = training_progress.TrainingProgress(
          config, sess, checkpoints_saver, best_model_saver,
          config.mode == 'train')
      utils.log()
      if config.mode == 'train':
        #summary_writer.add_graph(sess.graph)
        utils.heading('START TRAINING ({:})'.format(config.model_name))
        model_trainer.train(sess, progress, summary_writer)
      elif config.mode == 'eval-train':
        utils.heading('RUN EVALUATION ({:})'.format(config.model_name))
        progress.best_model_saver.restore(sess, tf.train.latest_checkpoint(
            config.checkpoints_dir))
        model_trainer.evaluate_all_tasks(sess, summary_writer, None, train_set=True)
      elif config.mode == 'eval-dev':
        utils.heading('RUN EVALUATION ({:})'.format(config.model_name))
        progress.best_model_saver.restore(sess, tf.train.latest_checkpoint(
            config.checkpoints_dir))
        model_trainer.evaluate_all_tasks(sess, summary_writer, None, train_set=False)
      elif config.mode == 'infer':
        utils.heading('START INFER ({:})'.format(config.model_name))
        progress.best_model_saver.restore(sess, tf.train.latest_checkpoint(
            config.checkpoints_dir))
        model_trainer.infer(sess)
      elif config.mode == 'translate':
        utils.heading('START TRANSLATE ({:})'.format(config.model_name))
        progress.best_model_saver.restore(sess, tf.train.latest_checkpoint(
          config.checkpoints_dir))
        model_trainer.translate(sess)
      elif config.mode == 'eval-translate-train':
        utils.heading('RUN EVALUATION ({:})'.format(config.model_name))
        progress.best_model_saver.restore(sess, tf.train.latest_checkpoint(
          config.checkpoints_dir))
        model_trainer.evaluate_all_tasks(sess, summary_writer, None, train_set=True, is_translate=True)
      elif config.mode == 'eval-translate-dev':
        utils.heading('RUN EVALUATION ({:})'.format(config.model_name))
        progress.best_model_saver.restore(sess, tf.train.latest_checkpoint(
          config.checkpoints_dir))
        model_trainer.evaluate_all_tasks(sess, summary_writer, None, train_set=False, is_translate=True)
      else:
        raise ValueError('Mode must be "train" or "eval"')