Ejemplo n.º 1
0
def mean_error(gen_hmm, obs_seq, actual_states):
    predicted_states = gen_hmm.define_labels_seq(obs_seq)
    error_array=errors(
        predicted = numpy.array(predicted_states),
        actual = numpy.array(actual_states)
    )
    print(error_array.eval())
    return error_array.eval().mean()
Ejemplo n.º 2
0
def get_error_on_patient(model, visible_set, hidden_set, algo, all_labels=True, pat=""):
    predicted_states = model.predict(numpy.asarray(visible_set).reshape((-1, 1)))
    if all_labels:
        error_array = errors(predicted=predicted_states, actual=hidden_set)
        return error_array.eval().mean()
    else:
        error_array = confusion_matrix(predicted_states=predicted_states, actual_states=hidden_set, pat=pat)

        return error_array
Ejemplo n.º 3
0
 def errors(self, y):
     return errors(
         predicted = self.y_pred,
         actual = y,
         not_shared = False
     )
Ejemplo n.º 4
0
 def errors(self, y):
     return errors(predicted=self.y_pred, actual=y, not_shared=False)