Ejemplo n.º 1
0
    def __iter__(self):
        p = np.size(self.wrt)
        v = 0.0001 * np.random.randn(p)
        eta = self.eta0 * np.ones(p)

        for i, (args, kwargs) in enumerate(self.args):
            gradient = self.fprime(self.wrt, *args, **kwargs)

            if not is_nonzerofinite(gradient):
                warnings.warn('gradient is either zero, nan or inf')
                break

            Hp = self.f_Hp(self.wrt, v, *args, **kwargs)

            eta = eta * np.maximum(0.5, 1 + self.mu * v * gradient)
            v *= self.lmbd
            v += eta * (gradient - self.lmbd * Hp)

            self.wrt -= eta * gradient

            yield {
                'n_iter': i,
                'args': args,
                'kwargs': kwargs,

                'gradient': gradient,
                'v': v, 'eta': eta
            }
Ejemplo n.º 2
0
    def __iter__(self):
        p = np.size(self.wrt)
        v = 0.0001 * np.random.randn(p)
        eta = self.eta0 * np.ones(p)

        for i, (args, kwargs) in enumerate(self.args):
            gradient = self.fprime(self.wrt, *args, **kwargs)

            if not is_nonzerofinite(gradient):
                warnings.warn('gradient is either zero, nan or inf')
                break

            Hp = self.f_Hp(self.wrt, v, *args, **kwargs)

            eta = eta * np.maximum(0.5, 1 + self.mu * v * gradient)
            v *= self.lmbd
            v += eta * (gradient - self.lmbd * Hp)

            self.wrt -= eta * gradient

            yield {
                'n_iter': i,
                'args': args,
                'kwargs': kwargs,
                'gradient': gradient,
                'v': v,
                'eta': eta
            }
Ejemplo n.º 3
0
Archivo: ncg.py Proyecto: osdf/climin
    def __iter__(self):
        args, kwargs = self.args.next()
        grad = self.fprime(self.wrt, *args, **kwargs)
        grad_m1 = scipy.zeros(grad.shape)
        loss = self.f(self.wrt, *args, **kwargs)
        loss_m1 = 0

        for i, (next_args, next_kwargs) in enumerate(self.args):
            if i == 0:
                direction, info = -grad, {}
            else:
                direction, info = self.find_direction(grad_m1, grad, direction)

            if not is_nonzerofinite(direction):
                self.logfunc(
                    {'message': 'direction is invalid -- neet to bail out.'})
                break

            # Line search minimization.
            initialization = 2 * (loss - loss_m1) / scipy.dot(grad, direction)
            initialization = min(1, initialization)
            step_length = self.line_search.search(
                direction, initialization,  args, kwargs)
            self.wrt += step_length * direction

            # If we don't bail out here, we will enter regions of numerical
            # instability.
            if (abs(grad) < self.epsilon).all():
                self.logfunc(
                    {'message': 'converged - gradient smaller than epsilon'})
                break

            # Prepare everything for the next loop.
            args, kwargs = next_args, next_kwargs
            grad_m1[:], grad[:] = grad, self.line_search.grad
            loss_m1, loss = loss, self.line_search.val

            info.update({
                'loss': loss,
                'step_length': step_length,
                'n_iter': i,
                'args': args,
                'gradient': grad,
                'gradient_m1': grad_m1,
                'kwargs': kwargs,
            })
            yield info
Ejemplo n.º 4
0
    def __iter__(self):
        args, kwargs = self.args.next()
        grad = self.fprime(self.wrt, *args, **kwargs)
        grad_m1 = np.zeros(grad.shape)
        loss = self.f(self.wrt, *args, **kwargs)
        loss_m1 = 0

        for i, (next_args, next_kwargs) in enumerate(self.args):
            if i == 0:
                direction, info = -grad, {}
            else:
                direction, info = self.find_direction(grad_m1, grad, direction)

            if not is_nonzerofinite(direction):
                warnings.warn('gradient is either zero, nan or inf')
                break

            # Line search minimization.
            initialization = 2 * (loss - loss_m1) / np.dot(grad, direction)
            initialization = min(1, initialization)
            step_length = self.line_search.search(
                direction, initialization,  args, kwargs)
            self.wrt += step_length * direction

            # If we don't bail out here, we will enter regions of numerical
            # instability.
            if (abs(grad) < self.min_grad).all():
                warnings.warn('gradient is too small')
                break

            # Prepare everything for the next loop.
            args, kwargs = next_args, next_kwargs
            grad_m1[:], grad[:] = grad, self.line_search.grad
            loss_m1, loss = loss, self.line_search.val

            info.update({
                'n_iter': i,
                'args': args,
                'kwargs': kwargs,

                'loss': loss,
                'gradient': grad,
                'gradient_m1': grad_m1,
                'step_length': step_length,
            })
            yield info
Ejemplo n.º 5
0
    def __iter__(self):
        args, kwargs = self.args.next()
        grad = self.fprime(self.wrt, *args, **kwargs)
        grad_m1 = np.zeros(grad.shape)
        loss = self.f(self.wrt, *args, **kwargs)
        loss_m1 = 0

        for i, (next_args, next_kwargs) in enumerate(self.args):
            if i == 0:
                direction, info = -grad, {}
            else:
                direction, info = self.find_direction(grad_m1, grad, direction)

            if not is_nonzerofinite(direction):
                warnings.warn('gradient is either zero, nan or inf')
                break

            # Line search minimization.
            initialization = 2 * (loss - loss_m1) / np.dot(grad, direction)
            initialization = min(1, initialization)
            step_length = self.line_search.search(direction, initialization,
                                                  args, kwargs)
            self.wrt += step_length * direction

            # If we don't bail out here, we will enter regions of numerical
            # instability.
            if (abs(grad) < self.min_grad).all():
                warnings.warn('gradient is too small')
                break

            # Prepare everything for the next loop.
            args, kwargs = next_args, next_kwargs
            grad_m1[:], grad[:] = grad, self.line_search.grad
            loss_m1, loss = loss, self.line_search.val

            info.update({
                'n_iter': i,
                'args': args,
                'kwargs': kwargs,
                'loss': loss,
                'gradient': grad,
                'gradient_m1': grad_m1,
                'step_length': step_length,
            })
            yield info
Ejemplo n.º 6
0
Archivo: bfgs.py Proyecto: osdf/climin
    def __iter__(self):
        args, kwargs = self.args.next()
        grad = self.fprime(self.wrt, *args, **kwargs)
        grad_m1 = scipy.zeros(grad.shape)

        if self.inv_hessian is None:
            self.inv_hessian = scipy.eye(grad.shape[0])

        for i, (next_args, next_kwargs) in enumerate(self.args):
            if i == 0:
                direction, info = -grad, {}
            else:
                direction, info = self.find_direction(
                    grad_m1, grad, step, self.inv_hessian)

            if not is_nonzerofinite(direction):
                self.logfunc(
                    {'message': 'direction is invalid -- need to bail out.'})
                break

            step_length = self.line_search.search(
                direction, None, args, kwargs)

            if step_length != 0:
                step = step_length * direction
                self.wrt += step
            else:
                self.logfunc(
                    {'message': 'step length is 0--need to bail out.'})
                break

            # Prepare everything for the next loop.
            args, kwargs = next_args, next_kwargs
            # TODO: not all line searches have .grad!
            grad_m1[:], grad[:] = grad, self.line_search.grad

            info.update({
                'step_length': step_length,
                'n_iter': i,
                'args': args,
                'kwargs': kwargs,
            })
            yield info
Ejemplo n.º 7
0
    def __iter__(self):
        args, kwargs = self.args.next()
        grad = self.fprime(self.wrt, *args, **kwargs)
        grad_m1 = scipy.zeros(grad.shape)

        if self.inv_hessian is None:
            self.inv_hessian = scipy.eye(grad.shape[0])

        for i, (next_args, next_kwargs) in enumerate(self.args):
            if i == 0:
                direction, info = -grad, {}
            else:
                direction, info = self.find_direction(grad_m1, grad, step,
                                                      self.inv_hessian)

            if not is_nonzerofinite(direction):
                # TODO: inform the user here.
                break

            step_length = self.line_search.search(direction, None, args,
                                                  kwargs)

            if step_length != 0:
                step = step_length * direction
                self.wrt += step
            else:
                self.logfunc(
                    {'message': 'step length is 0--need to bail out.'})
                break

            # Prepare everything for the next loop.
            args, kwargs = next_args, next_kwargs
            # TODO: not all line searches have .grad!
            grad_m1[:], grad[:] = grad, self.line_search.grad

            info.update({
                'step_length': step_length,
                'n_iter': i,
                'args': args,
                'kwargs': kwargs,
            })
            yield info
Ejemplo n.º 8
0
Archivo: smd.py Proyecto: osdf/climin
    def __iter__(self):
        p = np.size(self.wrt)
        v = 0.0001*np.random.randn(p)
        eta = self.eta0 * np.ones(p)

        for i, (args, kwargs) in enumerate(self.args):
            gradient = self.fprime(self.wrt, *args, **kwargs)

            if not is_nonzerofinite(gradient):
                self.logfunc(
                    {'message': 'gradient is invalid -- need to bail out.'})
                break

            Hp = self.f_Hp(self.wrt, v, *args, **kwargs)

            eta = eta * np.maximum(0.5, 1 + self.mu * v * gradient)
            v *= self.lmbd
            v += eta*(gradient - self.lmbd*Hp)

            self.wrt -= eta*gradient

            yield {'gradient': gradient, 'v': v, 'eta': eta}
Ejemplo n.º 9
0
    def __iter__(self):
        args, kwargs = self.args.next()
        grad = self.fprime(self.wrt, *args, **kwargs)
        grad_m1 = scipy.zeros(grad.shape)
        factor_shape = self.n_factors, self.wrt.shape[0]
        grad_diffs = scipy.zeros(factor_shape)
        steps = scipy.zeros(factor_shape)
        hessian_diag = self.initial_hessian_diag
        step_length = None
        step = scipy.empty(grad.shape)
        grad_diff = scipy.empty(grad.shape)

        # We need to keep track in which order the different statistics
        # from different runs are saved.
        #
        # Why?
        #
        # Each iteration, we save statistics such as the difference between
        # gradients and the actual steps taken. These are then later combined
        # into an approximation of the Hessian. We call them factors. Since we
        # don't want to create a new matrix of factors each iteration, we
        # instead keep track externally, which row of the matrix corresponds
        # to which iteration. `idxs` now is a list which maps its i'th element
        # to the corresponding index for the array. Thus, idx[i] contains the
        # rowindex of the for the (n_factors - i)'th iteration prior to the
        # current one.
        idxs = []

        for i, (next_args, next_kwargs) in enumerate(self.args):
            if i == 0:
                direction = -grad
                info = {}
            else:
                sTgd = scipy.inner(step, grad_diff)
                if sTgd > 1E-10:
                    # Don't do an update if this value is too small.
                    # Determine index for the current update.
                    if not idxs:
                        # First iteration.
                        this_idx = 0
                    elif len(idxs) < self.n_factors:
                        # We are not "full" yet. Thus, append the next idxs.
                        this_idx = idxs[-1] + 1
                    else:
                        # we are full and discard the first index.
                        this_idx = idxs.pop(0)

                    idxs.append(this_idx)
                    grad_diffs[this_idx] = grad_diff
                    steps[this_idx] = step
                    hessian_diag = sTgd / scipy.inner(grad_diff, grad_diff)

                direction, info = self.find_direction(
                    grad_diffs, steps, -grad, hessian_diag, idxs)

            if not is_nonzerofinite(direction):
                warnings.warn('search direction is either 0, nan or inf')
                break

            step_length = self.line_search.search(
                direction, None, args, kwargs)

            step[:] = step_length * direction
            if step_length != 0:
                self.wrt += step
            else:
                warnings.warn('step length is 0')
                pass

            # Prepare everything for the next loop.
            args, kwargs = next_args, next_kwargs
            # TODO: not all line searches have .grad!
            grad_m1[:], grad[:] = grad, self.line_search.grad
            grad_diff = grad - grad_m1

            info.update({
                'step_length': step_length,
                'n_iter': i,
                'args': args,
                'kwargs': kwargs,
                'loss': self.line_search.val,
                'gradient': grad,
                'gradient_m1': grad_m1,
            })
            yield info
Ejemplo n.º 10
0
    def __iter__(self):
        args, kwargs = self.args.next()
        grad = self.fprime(self.wrt, *args, **kwargs)
        grad_m1 = scipy.zeros(grad.shape)
        factor_shape = self.n_factors, self.wrt.shape[0]
        grad_diffs = scipy.zeros(factor_shape)
        steps = scipy.zeros(factor_shape)
        hessian_diag = self.initial_hessian_diag
        step_length = None
        step = scipy.empty(grad.shape)
        grad_diff = scipy.empty(grad.shape)

        # We need to keep track in which order the different statistics
        # from different runs are saved.
        #
        # Why?
        #
        # Each iteration, we save statistics such as the difference between
        # gradients and the actual steps taken. These are then later combined
        # into an approximation of the Hessian. We call them factors. Since we
        # don't want to create a new matrix of factors each iteration, we
        # instead keep track externally, which row of the matrix corresponds
        # to which iteration. `idxs` now is a list which maps its i'th element
        # to the corresponding index for the array. Thus, idx[i] contains the
        # rowindex of the for the (n_factors - i)'th iteration prior to the
        # current one.
        idxs = []

        for i, (next_args, next_kwargs) in enumerate(self.args):
            if i == 0:
                direction = -grad
                info = {}
            else:
                sTgd = scipy.inner(step, grad_diff)
                if sTgd > 1E-10:
                    # Don't do an update if this value is too small.
                    # Determine index for the current update.
                    if not idxs:
                        # First iteration.
                        this_idx = 0
                    elif len(idxs) < self.n_factors:
                        # We are not "full" yet. Thus, append the next idxs.
                        this_idx = idxs[-1] + 1
                    else:
                        # we are full and discard the first index.
                        this_idx = idxs.pop(0)

                    idxs.append(this_idx)
                    grad_diffs[this_idx] = grad_diff
                    steps[this_idx] = step
                    hessian_diag = sTgd / scipy.inner(grad_diff, grad_diff)

                direction, info = self.find_direction(grad_diffs, steps, -grad,
                                                      hessian_diag, idxs)

            if not is_nonzerofinite(direction):
                warnings.warn('search direction is either 0, nan or inf')
                break

            step_length = self.line_search.search(direction, None, args,
                                                  kwargs)

            step[:] = step_length * direction
            if step_length != 0:
                self.wrt += step
            else:
                warnings.warn('step length is 0')
                pass

            # Prepare everything for the next loop.
            args, kwargs = next_args, next_kwargs
            # TODO: not all line searches have .grad!
            grad_m1[:], grad[:] = grad, self.line_search.grad
            grad_diff = grad - grad_m1

            info.update({
                'step_length': step_length,
                'n_iter': i,
                'args': args,
                'kwargs': kwargs,
                'loss': self.line_search.val,
                'gradient': grad,
                'gradient_m1': grad_m1,
            })
            yield info