def build_index(self, filename: str): face_counter = 0 logger.info("Loading videos...") for video_i, row in tqdm(self.video_df.iterrows(), total=len(self.video_df)): db_paths = glob("./data/*/{videoID}.npz".format(videoID=self.video_df.loc[video_i].videoID)) if len(db_paths) == 0: continue db_path = db_paths[0] db_color_images, db_bounding_box, db_landmarks_2d, db_landmarks_3d = load_data(db_path) start_index = face_counter for frame_i in range(db_color_images.shape[-1]): face_counter += 1 self.landmarks_index.add_item( face_counter, self.embedding_maker.make_embedding(db_landmarks_2d[..., frame_i]) ) end_index = face_counter self.video_df.at[video_i, "start"] = start_index self.video_df.at[video_i, "end"] = end_index logger.info("Building index...") self.landmarks_index.build(10) # 10 trees # Save the landmarks index landmarks_filename = f"{filename}.landmarks" logger.info("Saving landmarks index to %s", landmarks_filename) self.landmarks_index.save(landmarks_filename) # Save the updated CSV containing start and end for each video csv_filename = f"{filename}.landmarks.ann" logger.info("Saving CSV to %s", csv_filename) self.video_df.to_csv(csv_filename, index=False)
def run(data_name, max_depth=3, params=None): if not os.path.exists(config.TEMP_PATH): os.mkdir(config.TEMP_PATH) X, y = base.load_data(data_name) scheduler = Scheduler() if params is None: params = base.SearchParams.default() base.perform_search(X, y, scheduler, max_depth, params, verbose=True)
def mobile_suggest_show(date_param): global model digits_test = load_data(date_param) x_test = digits_test.data[:,2:] y_test = model.predict(x_test) y_test.resize(len(y_test),1) ret = np.hstack((digits_test.data.astype(np.int64),y_test.astype(np.int64))) return print_html(ret)
def mobile_suggest_show(date_param): global model digits_test = load_data(date_param) x_test = digits_test.data[:, 2:] y_test = model.predict(x_test) y_test.resize(len(y_test), 1) ret = np.hstack( (digits_test.data.astype(np.int64), y_test.astype(np.int64))) return print_html(ret)
def create_tree(offline): global model module_path = dirname(__file__) if offline: digits = load_data("video_report_201507_v5.txt") X = digits.data[:,1:] y = digits.target.astype(np.int64) model = DecisionTreeRegressor(max_depth=80) model.fit(X, y) Util.store_object(model,join(module_path, 'data', 'tree_model')) else: model = Util.grab_object(join(module_path, 'data', 'tree_model')) return model
def mobile_suggest(date_param): global model mysql = ReportMysqlFlask(ReportMysqlFlask.conn_formal_params,date_param) #mysql = ReportMysqlFlask(ReportMysqlFlask.conn_space_params,date_param) mysql.select_mobile_file() digits_test = load_data(date_param) x_test = digits_test.data[:,2:] y_test = model.predict(x_test) y_test.resize(len(y_test),1) ret = np.hstack((digits_test.data.astype(np.int64),y_test.astype(np.int64))) mysql.update_suggest_rate(ret) return 'success'
def create_tree(offline): global model module_path = dirname(__file__) if offline: digits = load_data("video_report_201507_v5.txt") X = digits.data[:, 1:] y = digits.target.astype(np.int64) model = DecisionTreeRegressor(max_depth=80) model.fit(X, y) Util.store_object(model, join(module_path, 'data', 'tree_model')) else: model = Util.grab_object(join(module_path, 'data', 'tree_model')) return model
def mobile_suggest(date_param): global model mysql = ReportMysqlFlask(ReportMysqlFlask.conn_formal_params, date_param) #mysql = ReportMysqlFlask(ReportMysqlFlask.conn_space_params,date_param) mysql.select_mobile_file() digits_test = load_data(date_param) x_test = digits_test.data[:, 2:] y_test = model.predict(x_test) y_test.resize(len(y_test), 1) ret = np.hstack( (digits_test.data.astype(np.int64), y_test.astype(np.int64))) mysql.update_suggest_rate(ret) return 'success'
def main(argv=None): print(__doc__) tf.logging.set_verbosity(tf.logging.DEBUG) data = load_data(data_dir=FLAGS.data_dir, phases=('train', 'valid'), share_val_samples=FLAGS.share_val_samples, random_state=FLAGS.random_state) X_train, y_train, names_train = data['train'] X_valid, y_valid, names_valid = data['valid'] try: train(X_train, y_train, names_train, X_valid, y_valid, names_valid) except KeyboardInterrupt: tf.logging.warning('interrupted by the user') else: tf.logging.info('training done.')
def main(argv=None): print(__doc__) tf.logging.set_verbosity(tf.logging.DEBUG) data = load_data(data_dir=FLAGS.data_dir, random_state=FLAGS.random_state) X_train, y_train, names_train = data['train'] X_valid, y_valid, names_valid = data['train'] X_train, y_train, names_train = map(np.concatenate, ((X_train, X_valid), (y_train, y_valid), (names_train, names_valid))) X_pairs, y_pairs, names_pairs = combine_pairs_for_evaluation( X_train, y_train, y_valid, *data['test'], patches_used=40) with tf.device(FLAGS.device): evaluate(X_pairs, y_pairs, names_pairs)
import sys import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model import base loaded = base.load_data(sys.argv[1], sys.argv[2]) X = loaded[0] y = loaded[1] n_alphas = 100 alphas = np.logspace(-10, -2, n_alphas) data_test = eval(sys.argv[3:][0]) #fixing the long results with "...", example: [1.222, 23.321312, ... , 2.32322] np.set_printoptions(threshold=sys.maxsize) coefs = [] target_pred = [] for a in alphas: ridge = linear_model.Ridge(alpha=a, fit_intercept=False) ridge.fit(X, y) coefs.append(ridge.coef_) target_pred = ridge.predict(data_test) print(target_pred) # ax = plt.gca()
default='cat_to_name.json') ap.add_argument( 'image_path', default='/home/workspace/ImageClassifier/flowers/test/1/image_06752.jpg', nargs='*', action="store", type=str) inputs = ap.parse_args() image_path = inputs.image_path topk = inputs.top_k device = inputs.gpu path = inputs.checkpoint dataloaders, image_datasets = base.load_data() model = base.load_checkpoint(path) base.testdata_acc(model, dataloaders, image_datasets, 'test', True) with open('cat_to_name.json', 'r') as json_file: cat_to_name = json.load(json_file) img_tensor = base.process_image(image_path) probs = base.predict(image_path, model, topk) print("Image Directory: ", image_path) print("Predictions probabilities: ", probs)
'data/input/AddFeatures_train.csv', 'data/input/SubFeatures_train.csv', 'data/input/LogTransform_train.csv', ),#targetはここに含まれる 'test':('data/input/numerai_tournament_data.csv', 'data/input/MinMaxScaler_test.csv', #'data/input/PolynomialFeatures_test.csv', 'data/input/RoundFloat_test.csv', 'data/input/AddFeatures_test.csv', 'data/input/SubFeatures_test.csv', 'data/input/LogTransform_test.csv', ), } X,y,test = load_data(flist=FEATURE_LIST_stage1) assert((False in X.columns == test.columns) == False) nn_input_dim = X.shape[1] del X, y, test PARAMS_V1 = { 'colsample_bytree':0.9, 'learning_rate':0.01, 'max_depth':5, 'min_child_weight':1, 'n_estimators':300, 'nthread':-1, 'objective':'binary:logistic', 'seed':407, 'silent':True, 'subsample':0.8 } class ModelV1(BaseModel):