Ejemplo n.º 1
0
Archivo: market.py Proyecto: wcm95/RL
 def __init__(self):
     self.insdustry_quote = base.load_industryquote_xlsx()
     self.nav = base.load_nav_csv()
     self.records = base.load_records_csv()
     self.current_date = time
     self.trading_day_df = base.load_trading_day_csv()
     self.quote = base.load_quote_csv()
Ejemplo n.º 2
0
def test_Update_IR_rank():
    records = base.load_records_csv()
    industry_quote = base.load_industryquote_xlsx()
    nav = base.load_nav_csv()
    quote = base.load_quote_csv()
    IR_rank = base.load_irweek_csv()

    date = '2017-01-06'
    df_records = records[records.Updated <= date]
    df_ind_quote = industry_quote[industry_quote.TradingDay <= date]
    df_nav = nav[nav.NavDate <= date]
    df_quote = quote[quote.TradingDay <= date]

    Update_IR_rank(date, df_records, df_ind_quote, df_nav, df_quote, IR_rank)
Ejemplo n.º 3
0
Archivo: utils.py Proyecto: wcm95/RL
def process_data():
    df = base.load_quote_csv()
    df = with_nday_avg(df, 2)
    df = with_nday_avg(df, 3)
    df = with_nday_avg(df, 4)
    df = with_nday_avg(df, 5)
    df = with_nday_avg(df, 6)
    df = with_nday_avg(df, 7)

    df = with_nday_ratio_difference(df, 2)
    df = with_nday_ratio_difference(df, 3)
    df = with_nday_ratio_difference(df, 4)
    df = with_nday_ratio_difference(df, 5)
    df = with_nday_ratio_difference(df, 6)
    df = with_nday_ratio_difference(df, 7)

    df = with_nday_reward_ratio(df, 15)
    df = label_by_reward_ratio(df, 15)

    df = df.drop(column[3:] + ex_column, axis=1)
    df = df.dropna(axis=0, how='any')

    df.to_csv("../stock_avg.csv", index=False)
Ejemplo n.º 4
0
Archivo: utils.py Proyecto: wcm95/RL
import pandas as pd
import numpy as np
import datetime
import time
from bitarray import bitarray
import base

quote = base.load_quote_csv()
industry = base.load_industry_csv()
quote.dropna(inplace=True)


def func(x):
    if x < 0:
        return 0
    elif x >= 0:
        return 1


def signs_window(quote, code, size=10):
    vals = quote[quote.SecuCode == code].Close
    signs = pd.DataFrame(vals.diff()[1:].apply(func))
    names = ['signs_1']
    df = signs
    for i in range(1, size):
        df = df.merge(signs.shift(-i), left_index=True, right_index=True)
        names.append('signs_' + str(i + 1))
    df.columns = names
    return np.array(df.dropna().applymap(lambda x: int(x)))