def __init__(self, unlabeled_datasets = [], models=None):
     #
     # call the BaseLearner constructor to initialize various globals and process the
     # datasets, etc.; of course, these can subsequently be overwritten.
     BaseNBLearner.__init__(self, unlabeled_datasets=unlabeled_datasets, models=models)
     
     # use the random query function (i.e., ask for labels at random)
     self.query_function = self.get_random_unlabeled_ids 
     self.name = "Random Naive Bayes"
 def __init__(self, unlabeled_datasets = [], models=None, undersample_before_eval=False):
     #
     # call the BaseLearner constructor to initialize various globals and process the
     # datasets, etc.; of course, these can subsequently be overwritten.
     BaseNBLearner.__init__(self, unlabeled_datasets=unlabeled_datasets, models=models,
                                 undersample_before_eval=undersample_before_eval)
     
     # set the query function to uncertainty sampling
     self.query_function = self.uncertainty_sample
     self.name = "Uncertain Naive Bayes"
    def __init__(self, unlabeled_datasets=[], models=None):
        #
        # call the BaseLearner constructor to initialize various globals and process the
        # datasets, etc.; of course, these can subsequently be overwritten.
        BaseNBLearner.__init__(self,
                               unlabeled_datasets=unlabeled_datasets,
                               models=models)

        # use the random query function (i.e., ask for labels at random)
        self.query_function = self.get_random_unlabeled_ids
        self.name = "Random Naive Bayes"
    def __init__(self, unlabeled_datasets=[], models=None):
        #
        # call the BaseLearner constructor to initialize various globals and process the
        # datasets, etc.; of course, these can subsequently be overwritten.
        BaseNBLearner.__init__(self,
                               unlabeled_datasets=unlabeled_datasets,
                               models=models)

        # set the query function to uncertainty sampling
        pdb.set_trace()
        self.query_function = self.uncertainty_sample
        self.name = "Uncertain Naive Bayes"