Ejemplo n.º 1
0
    def _test(self, loader, **kwargs):

        if self.ema:
            self.sess.run(self.ema_load)

        cm = ConfusionMatrix(self.model.labels)
        steps = len(loader)
        total_loss = 0
        total_norm = 0
        verbose = kwargs.get("verbose", None)

        pg = create_progress_bar(steps)
        for batch_dict in pg(loader):
            y = batch_dict['y']
            feed_dict = self.model.make_input(batch_dict)
            guess, lossv = self.sess.run([self.model.best, self.test_loss],
                                         feed_dict=feed_dict)
            batchsz = self._get_batchsz(batch_dict)
            total_loss += lossv * batchsz
            total_norm += batchsz
            cm.add_batch(y, guess)

        metrics = cm.get_all_metrics()
        metrics['avg_loss'] = total_loss / float(total_norm)
        verbose_output(verbose, cm)

        return metrics
Ejemplo n.º 2
0
    def _step(self, loader, update, verbose=None):
        steps = len(loader)
        pg = create_progress_bar(steps)
        cm = ConfusionMatrix(self.labels)
        total_loss = 0
        i = 1
        preds, losses, ys = [], [], []
        dy.renew_cg()
        for batch_dict in pg(loader):
            x, y, l = self.model.make_input(batch_dict)
            pred = self.model.forward(x, l)
            preds.append(pred)
            loss = self.model.loss(pred, y)
            losses.append(loss)
            ys.append(y)
            if i % self.autobatchsz == 0:
                loss = dy.esum(losses)
                preds = dy.concatenate_cols(preds)
                total_loss += loss.npvalue().item()
                _add_to_cm(cm, np.array(ys), preds.npvalue())
                update(loss)
                preds, losses, ys = [], [], []
                dy.renew_cg()
            i += 1
        loss = dy.esum(losses)
        preds = dy.concatenate_cols(preds)
        total_loss += loss.npvalue().item()
        _add_to_cm(cm, np.array(ys), preds.npvalue())
        update(loss)

        metrics = cm.get_all_metrics()
        metrics['avg_loss'] = total_loss / float(steps)
        verbose_output(verbose, cm)
        return metrics
Ejemplo n.º 3
0
    def _test(self, loader, **kwargs):

        if self.ema:
            self.sess.run(self.ema_load)

        cm = ConfusionMatrix(self.model.labels)
        steps = len(loader)
        total_loss = 0
        total_norm = 0
        verbose = kwargs.get("verbose", None)

        pg = create_progress_bar(steps)
        for batch_dict in pg(loader):
            y = batch_dict['y']
            feed_dict = self.model.make_input(batch_dict)
            guess, lossv = self.sess.run([self.model.best, self.test_loss], feed_dict=feed_dict)
            batchsz = self._get_batchsz(batch_dict)
            total_loss += lossv * batchsz
            total_norm += batchsz
            cm.add_batch(y, guess)

        metrics = cm.get_all_metrics()
        metrics['avg_loss'] = total_loss / float(total_norm)
        verbose_output(verbose, cm)

        return metrics
Ejemplo n.º 4
0
    def _train(self, loader):
        self.model.train()
        steps = len(loader)
        pg = create_progress_bar(steps)
        cm = ConfusionMatrix(self.labels)
        total_loss = 0
        for x, y in loader:
            self.optimizer.zero_grad()
            if type(x) == list:
                x = [torch.autograd.Variable(item.cuda()) for item in x]
            else:
                x = torch.autograd.Variable(x.cuda())
            y = torch.autograd.Variable(y.cuda())
            pred = self.model(x)
            loss = self.crit(pred, y)
            total_loss += loss.data[0]
            loss.backward()
            _add_to_cm(cm, y, pred)
            self.optimizer.step()
            pg.update()
        pg.done()

        metrics = cm.get_all_metrics()
        metrics['avg_loss'] = total_loss/float(steps)
        return metrics
Ejemplo n.º 5
0
    def _step(self, loader, update, log, reporting_fns, verbose=None):
        steps = len(loader)
        pg = create_progress_bar(steps)
        cm = ConfusionMatrix(self.labels)
        epoch_loss = 0
        epoch_div = 0

        for batch_dict in pg(loader):
            dy.renew_cg()
            inputs = self.model.make_input(batch_dict)
            ys = inputs.pop('y')
            preds = self.model.forward(inputs)
            losses = self.model.loss(preds, ys)
            loss = dy.mean_batches(losses)
            batchsz = self._get_batchsz(batch_dict)
            lossv = loss.npvalue().item() * batchsz
            epoch_loss += lossv
            epoch_div += batchsz
            _add_to_cm(cm, ys, preds.npvalue())
            update(loss)
            log(self.optimizer.global_step, lossv, batchsz, reporting_fns)

        metrics = cm.get_all_metrics()
        metrics['avg_loss'] = epoch_loss / float(epoch_div)
        verbose_output(verbose, cm)
        return metrics
Ejemplo n.º 6
0
    def _train(self, loader, **kwargs):
        self.model.train()
        reporting_fns = kwargs.get('reporting_fns', [])
        steps = len(loader)
        pg = create_progress_bar(steps)
        cm = ConfusionMatrix(self.labels)
        epoch_loss = 0
        epoch_div = 0
        for batch_dict in pg(loader):
            self.optimizer.zero_grad()
            example = self._make_input(batch_dict)
            y = example.pop('y')
            pred = self.model(example)
            loss = self.crit(pred, y)
            batchsz = self._get_batchsz(batch_dict)
            report_loss = loss.item() * batchsz
            epoch_loss += report_loss
            epoch_div += batchsz
            self.nstep_agg += report_loss
            self.nstep_div += batchsz
            loss.backward()
            torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.clip)
            _add_to_cm(cm, y, pred)
            self.optimizer.step()

            if (self.optimizer.global_step + 1) % self.nsteps == 0:
                metrics = self.calc_metrics(self.nstep_agg, self.nstep_div)
                self.report(self.optimizer.global_step + 1, metrics,
                            self.nstep_start, 'Train', 'STEP', reporting_fns,
                            self.nsteps)
                self.reset_nstep()

        metrics = cm.get_all_metrics()
        metrics['avg_loss'] = epoch_loss / float(epoch_div)
        return metrics
Ejemplo n.º 7
0
    def _test(self, loader, **kwargs):

        if self.ema:
            self.sess.run(self.ema_load)

        cm = ConfusionMatrix(self.model.labels)
        steps = len(loader)
        total_loss = 0
        verbose = kwargs.get("verbose", False)

        pg = create_progress_bar(steps)
        for batch_dict in loader:
            y = batch_dict['y']
            feed_dict = self.model.make_input(batch_dict)
            guess, lossv = self.sess.run([self.model.best, self.test_loss],
                                         feed_dict=feed_dict)
            total_loss += lossv
            cm.add_batch(y, guess)
            pg.update()

        pg.done()
        metrics = cm.get_all_metrics()
        metrics['avg_loss'] = total_loss / float(steps)
        if verbose:
            print(cm)

        return metrics
Ejemplo n.º 8
0
    def _step(self,
              loader,
              update,
              log,
              reporting_fns,
              verbose=None,
              output=None,
              txts=None):
        steps = len(loader)
        pg = create_progress_bar(steps)
        cm = ConfusionMatrix(self.labels)
        epoch_loss = 0
        epoch_div = 0
        preds, losses, ys = [], [], []
        dy.renew_cg()
        for i, batch_dict in enumerate(pg(loader), 1):
            inputs = self.model.make_input(batch_dict)
            y = inputs.pop('y')
            pred = self.model.forward(inputs)
            preds.append(pred)
            loss = self.model.loss(pred, y)
            losses.append(loss)
            ys.append(y)
            if i % self.autobatchsz == 0:
                loss = dy.average(losses)
                preds = dy.concatenate_cols(preds)
                batchsz = len(losses)
                lossv = loss.npvalue().item() * batchsz
                epoch_loss += lossv
                epoch_div += batchsz
                _add_to_cm(cm, np.array(ys), preds.npvalue())
                update(loss)
                log(self.optimizer.global_step, lossv, batchsz, reporting_fns)
                preds, losses, ys = [], [], []
                dy.renew_cg()
        loss = dy.average(losses)
        preds = dy.concatenate_cols(preds)
        batchsz = len(losses)
        epoch_loss += loss.npvalue().item() * batchsz
        epoch_div += batchsz
        _add_to_cm(cm, np.array(ys), preds.npvalue())
        update(loss)

        metrics = cm.get_all_metrics()
        metrics['avg_loss'] = epoch_loss / float(epoch_div)
        verbose_output(verbose, cm)
        return metrics
Ejemplo n.º 9
0
    def _step(self,
              loader,
              update,
              log,
              reporting_fns,
              verbose=None,
              output=None,
              txts=None):
        steps = len(loader)
        pg = create_progress_bar(steps)
        cm = ConfusionMatrix(self.labels)
        epoch_loss = 0
        epoch_div = 0
        handle = None
        line_number = 0
        if output is not None and txts is not None:
            handle = open(output, "w")

        for batch_dict in pg(loader):
            dy.renew_cg()
            inputs = self.model.make_input(batch_dict)
            ys = inputs.pop('y')
            preds = self.model.forward(inputs)
            losses = self.model.loss(preds, ys)
            loss = dy.mean_batches(losses)
            batchsz = self._get_batchsz(batch_dict)
            lossv = loss.npvalue().item() * batchsz
            if handle is not None:
                for p, y in zip(preds, ys):
                    handle.write('{}\t{}\t{}\n'.format(
                        " ".join(txts[line_number]), self.model.labels[p],
                        self.model.labels[y]))
                    line_number += 1
            epoch_loss += lossv
            epoch_div += batchsz
            _add_to_cm(cm, ys, preds.npvalue())
            update(loss)
            log(self.optimizer.global_step, lossv, batchsz, reporting_fns)

        metrics = cm.get_all_metrics()
        metrics['avg_loss'] = epoch_loss / float(epoch_div)
        verbose_output(verbose, cm)
        if handle is not None:
            handle.close()
        return metrics
Ejemplo n.º 10
0
    def _train(self, loader):

        cm = ConfusionMatrix(self.model.labels)
        total_loss = 0
        steps = len(loader)
        pg = create_progress_bar(steps)
        for batch_dict in loader:
            y = batch_dict['y']
            feed_dict = self.model.make_input(batch_dict, do_dropout=True)
            _, step, lossv, guess = self.sess.run([self.train_op, self.global_step, self.loss, self.model.best], feed_dict=feed_dict)
            cm.add_batch(y, guess)
            total_loss += lossv
            pg.update()

        pg.done()
        metrics = cm.get_all_metrics()
        metrics['avg_loss'] = total_loss/float(steps)
        return metrics
Ejemplo n.º 11
0
    def _test(self, loader):
        steps = len(loader)
        pg = create_progress_bar(steps)
        cm = ConfusionMatrix(self.model.labels)

        for batch_dict in loader:
            truth = batch_dict.pop('y')
            inputs = self.model.make_input(batch_dict)
            pred = self.model.impl.predict_on_batch(inputs)
            guess = np.argmax(pred, axis=-1)
            cm.add_batch(truth, guess)
            pg.update()
        pg.done()

        test_metrics = cm.get_all_metrics()
        #for k, v in test_metrics.items():
        #    test_metrics[k] /= steps
        return test_metrics
Ejemplo n.º 12
0
    def _test(self, loader):

        total_loss = 0
        cm = ConfusionMatrix(self.model.labels)
        steps = len(loader)
        pg = ProgressBar(steps)
        for x, y in loader:
            feed_dict = self.model.ex2dict(x, y)
            lossv, guess = self.sess.run([self.loss, self.model.best],
                                         feed_dict=feed_dict)
            cm.add_batch(y, guess)
            total_loss += lossv
            pg.update()

        pg.done()
        metrics = cm.get_all_metrics()
        metrics['avg_loss'] = total_loss / float(steps)

        return metrics
Ejemplo n.º 13
0
    def _train(self, loader):

        cm = ConfusionMatrix(self.model.labels)
        total_loss = 0
        steps = len(loader)
        pg = ProgressBar(steps)
        for x, y in loader:
            feed_dict = self.model.ex2dict(x, y, do_dropout=True)
            _, step, lossv, guess = self.sess.run(
                [self.train_op, self.global_step, self.loss, self.model.best],
                feed_dict=feed_dict)
            cm.add_batch(y, guess)
            total_loss += lossv
            pg.update()

        pg.done()
        metrics = cm.get_all_metrics()
        metrics['avg_loss'] = total_loss / float(steps)
        return metrics
Ejemplo n.º 14
0
    def _step(self, loader, update):
        steps = len(loader)
        pg = create_progress_bar(steps)
        cm = ConfusionMatrix(self.labels)
        total_loss = 0

        for batch_dict in pg(loader):
            dy.renew_cg()
            xs, ys, ls = self.model.make_input(batch_dict)
            preds = self.model.forward(xs, ls)
            losses = self.model.loss(preds, ys)
            loss = dy.sum_batches(losses)
            total_loss += loss.npvalue().item()
            _add_to_cm(cm, ys, preds.npvalue())
            update(loss)

        metrics = cm.get_all_metrics()
        metrics['avg_loss'] = total_loss / float(steps)
        return metrics
Ejemplo n.º 15
0
    def _test(self, ts):
        total_loss = 0
        steps = len(ts)
        cm = ConfusionMatrix(self.model.labels)

        pg = create_progress_bar(steps)
        for batch_dict in ts:
            y = fill_y(len(self.model.labels), batch_dict['y'])
            feed_dict = self.model.make_input(batch_dict, do_dropout=True)
            preds, lossv, = self.model.sess.run(
                [self.model.best, self.model.loss], feed_dict=feed_dict)
            # print(preds)
            cm.add_batch(y, preds)
            total_loss += lossv
            pg.update()
        pg.done()
        metrics = cm.get_all_metrics()
        metrics['avg_loss'] = float(total_loss) / steps
        return metrics
Ejemplo n.º 16
0
    def _test(self, loader):
        self.model.eval()
        total_loss = 0
        steps = len(loader)
        pg = create_progress_bar(steps)
        cm = ConfusionMatrix(self.labels)

        for batch_dict in loader:
            x, y = self.model.make_input(batch_dict)
            pred = self.model(x)
            loss = self.crit(pred, y)
            total_loss += loss.data[0]
            _add_to_cm(cm, y, pred)
            pg.update()
        pg.done()

        metrics = cm.get_all_metrics()
        metrics['avg_loss'] = total_loss/float(steps)

        return metrics
Ejemplo n.º 17
0
    def _test(self, loader, **kwargs):

        if self.ema:
            self.sess.run(self.ema_load)

        cm = ConfusionMatrix(self.model.labels)
        steps = len(loader)
        total_loss = 0
        total_norm = 0
        verbose = kwargs.get("verbose", None)
        output = kwargs.get('output')
        txts = kwargs.get('txts')
        handle = None
        line_number = 0
        if output is not None and txts is not None:
            handle = open(output, "w")

        pg = create_progress_bar(steps)
        for batch_dict in pg(loader):
            y = batch_dict['y']
            feed_dict = self.model.make_input(batch_dict)
            guess, lossv = self.sess.run([self.model.best, self.test_loss],
                                         feed_dict=feed_dict)
            batchsz = self._get_batchsz(batch_dict)
            if handle is not None:
                for predicted, gold in zip(guess, y):
                    handle.write('{}\t{}\t{}\n'.format(
                        " ".join(txts[line_number]),
                        self.model.labels[predicted], self.model.labels[gold]))
                    line_number += 1
            total_loss += lossv * batchsz
            total_norm += batchsz
            cm.add_batch(y, guess)

        metrics = cm.get_all_metrics()
        metrics['avg_loss'] = total_loss / float(total_norm)
        verbose_output(verbose, cm)

        if handle is not None:
            handle.close()
        return metrics
Ejemplo n.º 18
0
    def _train(self, loader):
        self.model.train()
        steps = len(loader)
        pg = create_progress_bar(steps)
        cm = ConfusionMatrix(self.labels)
        total_loss = 0
        for batch_dict in loader:
            self.optimizer.zero_grad()
            x, y = self.model.make_input(batch_dict)
            pred = self.model(x)
            loss = self.crit(pred, y)
            total_loss += loss.data[0]
            loss.backward()
            _add_to_cm(cm, y, pred)
            self.optimizer.step()
            pg.update()
        pg.done()

        metrics = cm.get_all_metrics()
        metrics['avg_loss'] = total_loss/float(steps)
        return metrics
Ejemplo n.º 19
0
    def _step(self, loader, update, log, reporting_fns, verbose=None):
        steps = len(loader)
        pg = create_progress_bar(steps)
        cm = ConfusionMatrix(self.labels)
        epoch_loss = 0
        epoch_div = 0
        preds, losses, ys = [], [], []
        dy.renew_cg()
        for i, batch_dict in enumerate(pg(loader), 1):
            inputs = self.model.make_input(batch_dict)
            y = inputs.pop('y')
            pred = self.model.forward(inputs)
            preds.append(pred)
            loss = self.model.loss(pred, y)
            losses.append(loss)
            ys.append(y)
            if i % self.autobatchsz == 0:
                loss = dy.average(losses)
                preds = dy.concatenate_cols(preds)
                batchsz = len(losses)
                lossv = loss.npvalue().item() * batchsz
                epoch_loss += lossv
                epoch_div += batchsz
                _add_to_cm(cm, np.array(ys), preds.npvalue())
                update(loss)
                log(self.optimizer.global_step, lossv, batchsz, reporting_fns)
                preds, losses, ys = [], [], []
                dy.renew_cg()
        loss = dy.average(losses)
        preds = dy.concatenate_cols(preds)
        batchsz = len(losses)
        epoch_loss += loss.npvalue().item() * batchsz
        epoch_div += batchsz
        _add_to_cm(cm, np.array(ys), preds.npvalue())
        update(loss)

        metrics = cm.get_all_metrics()
        metrics['avg_loss'] = epoch_loss / float(epoch_div)
        verbose_output(verbose, cm)
        return metrics
Ejemplo n.º 20
0
    def _test(self, loader, **kwargs):
        self.model.eval()
        total_loss = 0
        total_norm = 0
        steps = len(loader)
        pg = create_progress_bar(steps)
        cm = ConfusionMatrix(self.labels)
        verbose = kwargs.get("verbose", None)
        output = kwargs.get('output')
        txts = kwargs.get('txts')
        handle = None
        line_number = 0
        if output is not None and txts is not None:
            handle = open(output, "w")

        for batch_dict in pg(loader):
            example = self._make_input(batch_dict)
            ys = example.pop('y')
            pred = self.model(example)
            loss = self.crit(pred, ys)
            if handle is not None:
                for p, y in zip(pred, ys):
                    handle.write('{}\t{}\t{}\n'.format(
                        " ".join(txts[line_number]), self.model.labels[p],
                        self.model.labels[y]))
                    line_number += 1
            batchsz = self._get_batchsz(batch_dict)
            total_loss += loss.item() * batchsz
            total_norm += batchsz
            _add_to_cm(cm, ys, pred)

        metrics = cm.get_all_metrics()
        metrics['avg_loss'] = total_loss / float(total_norm)
        verbose_output(verbose, cm)
        if handle is not None:
            handle.close()

        return metrics
Ejemplo n.º 21
0
    def _test(self, loader, **kwargs):
        self.model.eval()
        total_loss = 0
        steps = len(loader)
        pg = create_progress_bar(steps)
        cm = ConfusionMatrix(self.labels)
        verbose = kwargs.get("verbose", None)

        for batch_dict in loader:
            vec = self._make_input(batch_dict)
            y = vec[-1]
            pred = self.model(vec[:-1])
            loss = self.crit(pred, y)
            total_loss += loss.item()
            _add_to_cm(cm, y, pred)
            pg.update()
        pg.done()

        metrics = cm.get_all_metrics()
        metrics['avg_loss'] = total_loss / float(steps)
        verbose_output(verbose, cm)

        return metrics
Ejemplo n.º 22
0
    def _train(self, loader):
        self.model.train()
        steps = len(loader)
        pg = create_progress_bar(steps)
        cm = ConfusionMatrix(self.labels)
        total_loss = 0
        for batch_dict in loader:
            self.optimizer.zero_grad()
            vec = self._make_input(batch_dict)
            y = vec[-1]
            pred = self.model(vec[:-1])
            loss = self.crit(pred, y)
            total_loss += loss.item()
            loss.backward()
            torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.clip)
            _add_to_cm(cm, y, pred)
            self.optimizer.step()
            pg.update()
        pg.done()

        metrics = cm.get_all_metrics()
        metrics['avg_loss'] = total_loss / float(steps)
        return metrics
Ejemplo n.º 23
0
    def _test(self, loader, **kwargs):
        self.model.eval()
        total_loss = 0
        total_norm = 0
        steps = len(loader)
        pg = create_progress_bar(steps)
        cm = ConfusionMatrix(self.labels)
        verbose = kwargs.get("verbose", None)

        for batch_dict in pg(loader):
            example = self._make_input(batch_dict)
            y = example.pop('y')
            pred = self.model(example)
            loss = self.crit(pred, y)
            batchsz = self._get_batchsz(batch_dict)
            total_loss += loss.item() * batchsz
            total_norm += batchsz
            _add_to_cm(cm, y, pred)

        metrics = cm.get_all_metrics()
        metrics['avg_loss'] = total_loss / float(total_norm)
        verbose_output(verbose, cm)

        return metrics
Ejemplo n.º 24
0
    def _train(self, loader, **kwargs):
        self.model.train()
        reporting_fns = kwargs.get('reporting_fns', [])
        steps = len(loader)
        pg = create_progress_bar(steps)
        cm = ConfusionMatrix(self.labels)
        epoch_loss = 0
        epoch_div = 0
        for batch_dict in pg(loader):
            self.optimizer.zero_grad()
            example = self._make_input(batch_dict)
            y = example.pop('y')
            pred = self.model(example)
            loss = self.crit(pred, y)
            batchsz = self._get_batchsz(batch_dict)
            report_loss = loss.item() * batchsz
            epoch_loss += report_loss
            epoch_div += batchsz
            self.nstep_agg += report_loss
            self.nstep_div += batchsz
            loss.backward()
            torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.clip)
            _add_to_cm(cm, y, pred)
            self.optimizer.step()

            if (self.optimizer.global_step + 1) % self.nsteps == 0:
                metrics = self.calc_metrics(self.nstep_agg, self.nstep_div)
                self.report(
                    self.optimizer.global_step + 1, metrics, self.nstep_start,
                    'Train', 'STEP', reporting_fns, self.nsteps
                )
                self.reset_nstep()

        metrics = cm.get_all_metrics()
        metrics['avg_loss'] = epoch_loss / float(epoch_div)
        return metrics
Ejemplo n.º 25
0
    def _test(self, loader, **kwargs):
        self.model.eval()
        total_loss = 0
        total_norm = 0
        steps = len(loader)
        pg = create_progress_bar(steps)
        cm = ConfusionMatrix(self.labels)
        verbose = kwargs.get("verbose", None)

        for batch_dict in pg(loader):
            example = self._make_input(batch_dict)
            y = example.pop('y')
            pred = self.model(example)
            loss = self.crit(pred, y)
            batchsz = self._get_batchsz(batch_dict)
            total_loss += loss.item() * batchsz
            total_norm += batchsz
            _add_to_cm(cm, y, pred)

        metrics = cm.get_all_metrics()
        metrics['avg_loss'] = total_loss / float(total_norm)
        verbose_output(verbose, cm)

        return metrics
Ejemplo n.º 26
0
    def _test(self, loader):
        self.model.eval()
        total_loss = 0
        steps = len(loader)
        pg = ProgressBar(steps)
        cm = ConfusionMatrix(self.labels)

        for x, y in loader:
            if type(x) == list:
                x = [torch.autograd.Variable(item.cuda()) for item in x]
            else:
                x = torch.autograd.Variable(x.cuda())
            y = torch.autograd.Variable(y.cuda())
            pred = self.model(x)
            loss = self.crit(pred, y)
            total_loss += loss.data[0]
            _add_to_cm(cm, y, pred)
            pg.update()
        pg.done()

        metrics = cm.get_all_metrics()
        metrics['avg_loss'] = total_loss / float(steps)

        return metrics