Ejemplo n.º 1
0
def calculate_stylegan2_fid():
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    parser = argparse.ArgumentParser()
    parser.add_argument('ckpt', type=str, help='Path to the stylegan2 checkpoint.')
    parser.add_argument('fid_stats', type=str, help='Path to the dataset fid statistics.')
    parser.add_argument('--size', type=int, default=256)
    parser.add_argument('--channel_multiplier', type=int, default=2)
    parser.add_argument('--batch_size', type=int, default=64)
    parser.add_argument('--num_sample', type=int, default=50000)
    parser.add_argument('--truncation', type=float, default=1)
    parser.add_argument('--truncation_mean', type=int, default=4096)
    args = parser.parse_args()

    # create stylegan2 model
    generator = StyleGAN2Generator(
        out_size=args.size,
        num_style_feat=512,
        num_mlp=8,
        channel_multiplier=args.channel_multiplier,
        resample_kernel=(1, 3, 3, 1))
    generator.load_state_dict(torch.load(args.ckpt)['params_ema'])
    generator = nn.DataParallel(generator).eval().to(device)

    if args.truncation < 1:
        with torch.no_grad():
            truncation_latent = generator.mean_latent(args.truncation_mean)
    else:
        truncation_latent = None

    # inception model
    inception = load_patched_inception_v3(device)

    total_batch = math.ceil(args.num_sample / args.batch_size)

    def sample_generator(total_batch):
        for _ in range(total_batch):
            with torch.no_grad():
                latent = torch.randn(args.batch_size, 512, device=device)
                samples, _ = generator([latent], truncation=args.truncation, truncation_latent=truncation_latent)
            yield samples

    features = extract_inception_features(sample_generator(total_batch), inception, total_batch, device)
    features = features.numpy()
    total_len = features.shape[0]
    features = features[:args.num_sample]
    print(f'Extracted {total_len} features, use the first {features.shape[0]} features to calculate stats.')
    sample_mean = np.mean(features, 0)
    sample_cov = np.cov(features, rowvar=False)

    # load the dataset stats
    stats = torch.load(args.fid_stats)
    real_mean = stats['mean']
    real_cov = stats['cov']

    # calculate FID metric
    fid = calculate_fid(sample_mean, sample_cov, real_mean, real_cov)
    print('fid:', fid)
def calculate_stats_from_dataset():
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    parser = argparse.ArgumentParser()
    parser.add_argument('--num_sample', type=int, default=50000)
    parser.add_argument('--batch_size', type=int, default=64)
    parser.add_argument('--size', type=int, default=512)
    parser.add_argument('--dataroot', type=str, default='datasets/ffhq')
    args = parser.parse_args()

    # inception model
    inception = load_patched_inception_v3(device)

    # create dataset
    opt = {}
    opt['name'] = 'FFHQ'
    opt['type'] = 'FFHQDataset'
    opt['dataroot_gt'] = f'datasets/ffhq/ffhq_{args.size}.lmdb'
    opt['io_backend'] = dict(type='lmdb')
    opt['use_hflip'] = False
    opt['mean'] = [0.5, 0.5, 0.5]
    opt['std'] = [0.5, 0.5, 0.5]
    dataset = build_dataset(opt)

    # create dataloader
    data_loader = DataLoader(
        dataset=dataset,
        batch_size=args.batch_size,
        shuffle=False,
        num_workers=4,
        sampler=None,
        drop_last=False)
    total_batch = math.ceil(args.num_sample / args.batch_size)

    def data_generator(data_loader, total_batch):
        for idx, data in enumerate(data_loader):
            if idx >= total_batch:
                break
            else:
                yield data['gt']

    features = extract_inception_features(
        data_generator(data_loader, total_batch), inception, total_batch,
        device)
    features = features.numpy()
    total_len = features.shape[0]
    features = features[:args.num_sample]
    print(f'Extracted {total_len} features, '
          f'use the first {features.shape[0]} features to calculate stats.')
    mean = np.mean(features, 0)
    cov = np.cov(features, rowvar=False)

    save_path = f'inception_{opt["name"]}_{args.size}.pth'
    torch.save(
        dict(name=opt['name'], size=args.size, mean=mean, cov=cov),
        save_path,
        _use_new_zipfile_serialization=False)
Ejemplo n.º 3
0
def calculate_fid_folder():
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    parser = argparse.ArgumentParser()
    parser.add_argument('folder', type=str, help='Path to the folder.')
    parser.add_argument('--fid_stats',
                        type=str,
                        help='Path to the dataset fid statistics.')
    parser.add_argument('--batch_size', type=int, default=64)
    parser.add_argument('--num_sample', type=int, default=50000)
    parser.add_argument('--num_workers', type=int, default=4)
    parser.add_argument('--backend',
                        type=str,
                        default='disk',
                        help='io backend for dataset. Option: disk, lmdb')
    args = parser.parse_args()

    # inception model
    inception = load_patched_inception_v3(device)

    # create dataset
    opt = {}
    opt['name'] = 'SingleImageDataset'
    opt['type'] = 'SingleImageDataset'
    opt['dataroot_lq'] = args.folder
    opt['io_backend'] = dict(type=args.backend)
    opt['mean'] = [0.5, 0.5, 0.5]
    opt['std'] = [0.5, 0.5, 0.5]
    dataset = build_dataset(opt)

    # create dataloader
    data_loader = DataLoader(dataset=dataset,
                             batch_size=args.batch_size,
                             shuffle=False,
                             num_workers=args.num_workers,
                             sampler=None,
                             drop_last=False)
    args.num_sample = min(args.num_sample, len(dataset))
    total_batch = math.ceil(args.num_sample / args.batch_size)

    def data_generator(data_loader, total_batch):
        for idx, data in enumerate(data_loader):
            if idx >= total_batch:
                break
            else:
                yield data['lq']

    features = extract_inception_features(
        data_generator(data_loader, total_batch), inception, total_batch,
        device)
    features = features.numpy()
    total_len = features.shape[0]
    features = features[:args.num_sample]
    print(f'Extracted {total_len} features, '
          f'use the first {features.shape[0]} features to calculate stats.')

    sample_mean = np.mean(features, 0)
    sample_cov = np.cov(features, rowvar=False)

    # load the dataset stats
    stats = torch.load(args.fid_stats)
    real_mean = stats['mean']
    real_cov = stats['cov']

    # calculate FID metric
    fid = calculate_fid(sample_mean, sample_cov, real_mean, real_cov)
    print('fid:', fid)