Ejemplo n.º 1
0
    '/sigma.mat')  # standard deviation of a priori SNR in dB from MATLAB.
sigma = tf.constant(sigma_mat['sigma'], dtype=tf.float32)

## DATASETS
if args.train:  ## TRAINING CLEAN SPEECH AND NOISE SET
    train_clean_speech_list = batch._train_list(
        args.train_clean_speech_path, '*.wav',
        'clean')  # clean speech training list.
    train_noise_list = batch._train_list(args.train_noise_path, '*.wav',
                                         'noise')  # noise training list.
    if not os.path.exists(args.model_path):
        os.makedirs(args.model_path)  # make model path directory.

if args.train or args.val:  ## VALIDATION CLEAN SPEECH AND NOISE SET
    val_clean_speech, val_clean_speech_len, val_snr, _ = batch._batch(
        args.val_clean_speech_path, '*.wav',
        list(range(args.min_snr, args.max_snr +
                   1)))  # clean validation waveforms and lengths.
    val_noise, val_noise_len, _, _ = batch._batch(
        args.val_noise_path, '*.wav',
        list(range(args.min_snr, args.max_snr +
                   1)))  # noise validation waveforms and lengths.

## TEST NOISY SPEECH SET
if args.test:
    test_noisy_speech, test_noisy_speech_len, test_snr, test_fnames = batch._batch(
        args.test_noisy_speech_path, '*.wav',
        [])  # noisy speech test waveforms and lengths.

## GPU CONFIGURATION
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
Ejemplo n.º 2
0
	'_noise_' + train_noise_ver + '_sample_size_' + str(sample_size) + '_mu_xi.mat') # mean of a priori SNR in dB from MATLAB.
mu = tf.constant(mu_mat['mu_xi'], dtype=tf.float32) 
sigma_mat = spio.loadmat(stats_path + '/clean_speech_' + train_clean_speech_ver + 
	'_noise_' + train_noise_ver + '_sample_size_' + str(sample_size) + '_sigma_xi.mat') # standard deviation of a priori SNR in dB from MATLAB.
sigma = tf.constant(sigma_mat['sigma_xi'], dtype=tf.float32) 

## DATASETS
if train:
	## TRAINING CLEAN SPEECH AND NOISE SET
	train_clean_speech_list = batch._train_list(train_clean_speech_path, '*.wav', 'clean') # clean speech training list.
	train_noise_list = batch._train_list(train_noise_path, '*.wav', 'noise') # noise training list.
	if not os.path.exists(model_path): os.makedirs(model_path) # make model path directory.

if train or val:
	## VALIDATION CLEAN SPEECH AND NOISE SET
	val_clean_speech, val_clean_speech_len, val_snr, _ = batch._batch(val_clean_speech_path, '*.wav', train_snr_list) # clean validation waveforms and lengths.
	val_noise, val_noise_len, _, _ = batch._batch(val_noise_path, '*.wav', train_snr_list) # noise validation waveforms and lengths.

## TEST NOISY SPEECH SET
if test: test_noisy_speech, test_noisy_speech_len, test_snr, test_fnames = batch._batch(test_noisy_speech_path, '*.wav', []) # noisy speech test waveforms and lengths.

## GPU CONFIGURATION

config = tf.ConfigProto()
config.allow_soft_placement=True
config.gpu_options.allow_growth=True
config.log_device_placement=False

## PLACEHOLDERS
s_ph = tf.placeholder(tf.int16, shape=[None, None], name='s_ph') # clean speech placeholder.
d_ph = tf.placeholder(tf.int16, shape=[None, None], name='d_ph') # noise placeholder.