Ejemplo n.º 1
0
def get_train_transform(patch_size):
    # we now create a list of transforms. These are not necessarily the best transforms to use for BraTS, this is just
    # to showcase some things
    tr_transforms = []

    # the first thing we want to run is the SpatialTransform. It reduces the size of our data to patch_size and thus
    # also reduces the computational cost of all subsequent operations. All subsequent operations do not modify the
    # shape and do not transform spatially, so no border artifacts will be introduced
    # Here we use the new SpatialTransform_2 which uses a new way of parameterizing elastic_deform
    # We use all spatial transformations with a probability of 0.2 per sample. This means that 1 - (1 - 0.1) ** 3 = 27%
    # of samples will be augmented, the rest will just be cropped
    tr_transforms.append(
        SpatialTransform_2(
            patch_size, [i // 2 for i in patch_size],
            do_elastic_deform=True,
            deformation_scale=(0, 0.25),
            do_rotation=True,
            angle_x=(-15 / 360. * 2 * np.pi, 15 / 360. * 2 * np.pi),
            angle_y=(-15 / 360. * 2 * np.pi, 15 / 360. * 2 * np.pi),
            angle_z=(-15 / 360. * 2 * np.pi, 15 / 360. * 2 * np.pi),
            do_scale=True,
            scale=(0.75, 1.25),
            border_mode_data='constant',
            border_cval_data=0,
            border_mode_seg='constant',
            border_cval_seg=0,
            order_seg=1,
            order_data=3,
            random_crop=True,
            p_el_per_sample=0.1,
            p_rot_per_sample=0.1,
            p_scale_per_sample=0.1))

    # now we mirror along all axes
    tr_transforms.append(MirrorTransform(axes=(0, 1, 2)))

    # gamma transform. This is a nonlinear transformation of intensity values
    # (https://en.wikipedia.org/wiki/Gamma_correction)
    tr_transforms.append(
        GammaTransform(gamma_range=(0.5, 2),
                       invert_image=False,
                       per_channel=True,
                       p_per_sample=0.15))
    # we can also invert the image, apply the transform and then invert back
    tr_transforms.append(
        GammaTransform(gamma_range=(0.5, 2),
                       invert_image=True,
                       per_channel=True,
                       p_per_sample=0.15))

    # Gaussian Noise
    tr_transforms.append(
        GaussianNoiseTransform(noise_variance=(0, 0.05), p_per_sample=0.15))

    # now we compose these transforms together
    tr_transforms = Compose(tr_transforms)
    return tr_transforms
def get_train_transform(patch_size):
    tr_transforms = []

    tr_transforms.append(
        SpatialTransform_2(
            patch_size, [i // 2 for i in patch_size],
            do_elastic_deform=True,
            deformation_scale=(0, 0.05),
            do_rotation=True,
            angle_x=(-5 / 360. * 2 * np.pi, 5 / 360. * 2 * np.pi),
            angle_y=(-5 / 360. * 2 * np.pi, 5 / 360. * 2 * np.pi),
            angle_z=(-5 / 360. * 2 * np.pi, 5 / 360. * 2 * np.pi),
            do_scale=True,
            scale=(0.75, 1.25),
            border_mode_data='constant',
            border_cval_data=-2.34,
            border_mode_seg='constant',
            border_cval_seg=0))

    tr_transforms.append(MirrorTransform(axes=(0, 1, 2)))
    tr_transforms.append(
        BrightnessMultiplicativeTransform((0.7, 1.5),
                                          per_channel=True,
                                          p_per_sample=0.15))
    tr_transforms.append(
        GammaTransform(gamma_range=(0.5, 2),
                       invert_image=True,
                       per_channel=True,
                       p_per_sample=0.15))
    tr_transforms.append(
        GaussianNoiseTransform(noise_variance=(0, 0.15), p_per_sample=0.15))
    tr_transforms = Compose(tr_transforms)
    return tr_transforms
def get_train_transform(patch_size):
    """
    data augmentation for training data, inspired by:
    https://github.com/MIC-DKFZ/batchgenerators/blob/master/batchgenerators/examples/brats2017/brats2017_dataloader_3D.py
    :param patch_size: shape of network's input
    :return list of transformations
    """

    train_transforms = []

    def rad(deg):
        return (-deg / 360 * 2 * np.pi, deg / 360 * 2 * np.pi)

    train_transforms.append(
        SpatialTransform_2(
            patch_size,
            (10, 10, 10),
            do_elastic_deform=True,
            deformation_scale=(0, 0.25),
            do_rotation=True,
            angle_z=rad(15),
            angle_x=(0, 0),
            angle_y=(0, 0),
            do_scale=True,
            scale=(0.75, 1.25),
            border_mode_data='constant',
            border_cval_data=0,
            border_mode_seg='constant',
            border_cval_seg=0,
            order_seg=1,
            random_crop=False,
            p_el_per_sample=0.2,
            p_rot_per_sample=0.2,
            p_scale_per_sample=0.2,
        ))

    train_transforms.append(MirrorTransform(axes=(0, 1)))

    train_transforms.append(
        BrightnessMultiplicativeTransform((0.7, 1.5),
                                          per_channel=True,
                                          p_per_sample=0.2))

    train_transforms.append(
        GammaTransform(gamma_range=(0.2, 1.0),
                       invert_image=False,
                       per_channel=False,
                       p_per_sample=0.2))

    train_transforms.append(
        GaussianNoiseTransform(noise_variance=(0, 0.05), p_per_sample=0.2))

    train_transforms.append(
        GaussianBlurTransform(blur_sigma=(0.2, 1.0),
                              different_sigma_per_channel=False,
                              p_per_channel=0.0,
                              p_per_sample=0.2))

    return Compose(train_transforms)
Ejemplo n.º 4
0
    def _make_training_transforms(self):
        if self.no_data_augmentation:
            print("No data augmentation will be performed during training!")
            return []

        patch_size = self.patch_size[::-1]  # (x, y, z) order
        rot_angle_x = self.training_augmentation_args.get('angle_x', 15)
        rot_angle_y = self.training_augmentation_args.get('angle_y', 15)
        rot_angle_z = self.training_augmentation_args.get('angle_z', 15)
        p_per_sample = self.training_augmentation_args.get(
            'p_per_sample', 0.15)

        train_transforms = [
            SpatialTransform_2(
                patch_size,
                patch_size // 2,
                do_elastic_deform=self.training_augmentation_args.get(
                    'do_elastic_deform', True),
                deformation_scale=self.training_augmentation_args.get(
                    'deformation_scale', (0, 0.25)),
                do_rotation=self.training_augmentation_args.get(
                    'do_rotation', True),
                angle_x=(-rot_angle_x / 360. * 2 * np.pi,
                         rot_angle_x / 360. * 2 * np.pi),
                angle_y=(-rot_angle_y / 360. * 2 * np.pi,
                         rot_angle_y / 360. * 2 * np.pi),
                angle_z=(-rot_angle_z / 360. * 2 * np.pi,
                         rot_angle_z / 360. * 2 * np.pi),
                do_scale=self.training_augmentation_args.get('do_scale', True),
                scale=self.training_augmentation_args.get(
                    'scale', (0.75, 1.25)),
                border_mode_data='nearest',
                border_cval_data=0,
                order_data=3,
                # border_mode_seg='nearest', border_cval_seg=0,
                # order_seg=0,
                random_crop=False,
                p_el_per_sample=self.training_augmentation_args.get(
                    'p_el_per_sample', 0.5),
                p_rot_per_sample=self.training_augmentation_args.get(
                    'p_rot_per_sample', 0.5),
                p_scale_per_sample=self.training_augmentation_args.get(
                    'p_scale_per_sample', 0.5))
        ]

        if self.training_augmentation_args.get("do_mirror", False):
            train_transforms.append(MirrorTransform(axes=(0, 1, 2)))

        train_transforms.append(
            BrightnessMultiplicativeTransform(
                self.training_augmentation_args.get('brightness_range',
                                                    (0.7, 1.5)),
                per_channel=True,
                p_per_sample=p_per_sample))
        train_transforms.append(
            GaussianNoiseTransform(
                noise_variance=self.training_augmentation_args.get(
                    'gaussian_noise_variance', (0, 0.05)),
                p_per_sample=p_per_sample))
        train_transforms.append(
            GammaTransform(gamma_range=self.training_augmentation_args.get(
                'gamma_range', (0.5, 2)),
                           invert_image=False,
                           per_channel=True,
                           p_per_sample=p_per_sample))

        print("train_transforms\n", train_transforms)

        return train_transforms
def get_default_augmentation(dataloader_train,
                             dataloader_val,
                             patch_size,
                             params=default_3D_augmentation_params,
                             border_val_seg=-1,
                             pin_memory=True,
                             seeds_train=None,
                             seeds_val=None,
                             regions=None):
    assert params.get(
        'mirror') is None, "old version of params, use new keyword do_mirror"
    tr_transforms = []

    if params.get("selected_data_channels") is not None:
        tr_transforms.append(
            DataChannelSelectionTransform(
                params.get("selected_data_channels")))

    if params.get("selected_seg_channels") is not None:
        tr_transforms.append(
            SegChannelSelectionTransform(params.get("selected_seg_channels")))

    # don't do color augmentations while in 2d mode with 3d data because the color channel is overloaded!!
    if params.get("dummy_2D") is not None and params.get("dummy_2D"):
        tr_transforms.append(Convert3DTo2DTransform())
        patch_size_spatial = patch_size[1:]
    else:
        patch_size_spatial = patch_size

    # Set order_data=0 and order_seg=0 for some more speed for cascade???
    tr_transforms.append(
        SpatialTransform(patch_size_spatial,
                         patch_center_dist_from_border=None,
                         do_elastic_deform=params.get("do_elastic"),
                         alpha=params.get("elastic_deform_alpha"),
                         sigma=params.get("elastic_deform_sigma"),
                         do_rotation=params.get("do_rotation"),
                         angle_x=params.get("rotation_x"),
                         angle_y=params.get("rotation_y"),
                         angle_z=params.get("rotation_z"),
                         do_scale=params.get("do_scaling"),
                         scale=params.get("scale_range"),
                         border_mode_data=params.get("border_mode_data"),
                         border_cval_data=0,
                         order_data=3,
                         border_mode_seg="constant",
                         border_cval_seg=border_val_seg,
                         order_seg=1,
                         random_crop=params.get("random_crop"),
                         p_el_per_sample=params.get("p_eldef"),
                         p_scale_per_sample=params.get("p_scale"),
                         p_rot_per_sample=params.get("p_rot"),
                         independent_scale_for_each_axis=params.get(
                             "independent_scale_factor_for_each_axis")))
    if params.get("dummy_2D") is not None and params.get("dummy_2D"):
        tr_transforms.append(Convert2DTo3DTransform())

    if params.get("do_gamma"):
        tr_transforms.append(
            GammaTransform(params.get("gamma_range"),
                           False,
                           True,
                           retain_stats=params.get("gamma_retain_stats"),
                           p_per_sample=params["p_gamma"]))

    if params.get("do_mirror"):
        tr_transforms.append(MirrorTransform(params.get("mirror_axes")))

    if params.get("mask_was_used_for_normalization") is not None:
        mask_was_used_for_normalization = params.get(
            "mask_was_used_for_normalization")
        tr_transforms.append(
            MaskTransform(mask_was_used_for_normalization,
                          mask_idx_in_seg=0,
                          set_outside_to=0))

    tr_transforms.append(RemoveLabelTransform(-1, 0))

    if params.get("move_last_seg_chanel_to_data") is not None and params.get(
            "move_last_seg_chanel_to_data"):
        tr_transforms.append(
            MoveSegAsOneHotToData(1, params.get("all_segmentation_labels"),
                                  'seg', 'data'))
        if params.get("cascade_do_cascade_augmentations"
                      ) and not None and params.get(
                          "cascade_do_cascade_augmentations"):
            # Remove the following transforms to remove cascade DA ??
            tr_transforms.append(
                ApplyRandomBinaryOperatorTransform(
                    channel_idx=list(
                        range(-len(params.get("all_segmentation_labels")), 0)),
                    p_per_sample=params.get(
                        "cascade_random_binary_transform_p"),
                    key="data",
                    strel_size=params.get(
                        "cascade_random_binary_transform_size")))
            tr_transforms.append(
                RemoveRandomConnectedComponentFromOneHotEncodingTransform(
                    channel_idx=list(
                        range(-len(params.get("all_segmentation_labels")), 0)),
                    key="data",
                    p_per_sample=params.get("cascade_remove_conn_comp_p"),
                    fill_with_other_class_p=params.get(
                        "cascade_remove_conn_comp_max_size_percent_threshold"),
                    dont_do_if_covers_more_than_X_percent=params.get(
                        "cascade_remove_conn_comp_fill_with_other_class_p")))

    tr_transforms.append(RenameTransform('seg', 'target', True))

    if regions is not None:
        tr_transforms.append(
            ConvertSegmentationToRegionsTransform(regions, 'target', 'target'))

    tr_transforms.append(NumpyToTensor(['data', 'target'], 'float'))

    tr_transforms = Compose(tr_transforms)
    # from batchgenerators.dataloading import SingleThreadedAugmenter
    # batchgenerator_train = SingleThreadedAugmenter(dataloader_train, tr_transforms)
    # import IPython;IPython.embed()

    batchgenerator_train = MultiThreadedAugmenter(
        dataloader_train,
        tr_transforms,
        params.get('num_threads'),
        params.get("num_cached_per_thread"),
        seeds=seeds_train,
        pin_memory=pin_memory)

    val_transforms = []
    val_transforms.append(RemoveLabelTransform(-1, 0))
    if params.get("selected_data_channels") is not None:
        val_transforms.append(
            DataChannelSelectionTransform(
                params.get("selected_data_channels")))
    if params.get("selected_seg_channels") is not None:
        val_transforms.append(
            SegChannelSelectionTransform(params.get("selected_seg_channels")))

    if params.get("move_last_seg_chanel_to_data") is not None and params.get(
            "move_last_seg_chanel_to_data"):
        val_transforms.append(
            MoveSegAsOneHotToData(1, params.get("all_segmentation_labels"),
                                  'seg', 'data'))

    val_transforms.append(RenameTransform('seg', 'target', True))

    if regions is not None:
        val_transforms.append(
            ConvertSegmentationToRegionsTransform(regions, 'target', 'target'))

    val_transforms.append(NumpyToTensor(['data', 'target'], 'float'))
    val_transforms = Compose(val_transforms)

    # batchgenerator_val = SingleThreadedAugmenter(dataloader_val, val_transforms)
    batchgenerator_val = MultiThreadedAugmenter(
        dataloader_val,
        val_transforms,
        max(params.get('num_threads') // 2, 1),
        params.get("num_cached_per_thread"),
        seeds=seeds_val,
        pin_memory=pin_memory)
    return batchgenerator_train, batchgenerator_val
Ejemplo n.º 6
0
def get_moreDA_augmentation(dataloader_train,
                            dataloader_val,
                            patch_size,
                            params=default_3D_augmentation_params,
                            border_val_seg=-1,
                            seeds_train=None,
                            seeds_val=None,
                            order_seg=1,
                            order_data=3,
                            deep_supervision_scales=None,
                            soft_ds=False,
                            classes=None,
                            pin_memory=True,
                            regions=None,
                            use_nondetMultiThreadedAugmenter: bool = False):
    assert params.get(
        'mirror') is None, "old version of params, use new keyword do_mirror"

    tr_transforms = []

    if params.get("selected_data_channels") is not None:
        tr_transforms.append(
            DataChannelSelectionTransform(
                params.get("selected_data_channels")))

    if params.get("selected_seg_channels") is not None:
        tr_transforms.append(
            SegChannelSelectionTransform(params.get("selected_seg_channels")))

    # don't do color augmentations while in 2d mode with 3d data because the color channel is overloaded!!
    if params.get("dummy_2D") is not None and params.get("dummy_2D"):
        ignore_axes = (0, )
        tr_transforms.append(Convert3DTo2DTransform())
        patch_size_spatial = patch_size[1:]
    else:
        patch_size_spatial = patch_size
        ignore_axes = None

    tr_transforms.append(
        SpatialTransform(patch_size_spatial,
                         patch_center_dist_from_border=None,
                         do_elastic_deform=params.get("do_elastic"),
                         alpha=params.get("elastic_deform_alpha"),
                         sigma=params.get("elastic_deform_sigma"),
                         do_rotation=params.get("do_rotation"),
                         angle_x=params.get("rotation_x"),
                         angle_y=params.get("rotation_y"),
                         angle_z=params.get("rotation_z"),
                         p_rot_per_axis=params.get("rotation_p_per_axis"),
                         do_scale=params.get("do_scaling"),
                         scale=params.get("scale_range"),
                         border_mode_data=params.get("border_mode_data"),
                         border_cval_data=0,
                         order_data=order_data,
                         border_mode_seg="constant",
                         border_cval_seg=border_val_seg,
                         order_seg=order_seg,
                         random_crop=params.get("random_crop"),
                         p_el_per_sample=params.get("p_eldef"),
                         p_scale_per_sample=params.get("p_scale"),
                         p_rot_per_sample=params.get("p_rot"),
                         independent_scale_for_each_axis=params.get(
                             "independent_scale_factor_for_each_axis")))

    if params.get("dummy_2D"):
        tr_transforms.append(Convert2DTo3DTransform())

    # we need to put the color augmentations after the dummy 2d part (if applicable). Otherwise the overloaded color
    # channel gets in the way
    tr_transforms.append(GaussianNoiseTransform(p_per_sample=0.1))
    tr_transforms.append(
        GaussianBlurTransform((0.5, 1.),
                              different_sigma_per_channel=True,
                              p_per_sample=0.2,
                              p_per_channel=0.5))
    tr_transforms.append(
        BrightnessMultiplicativeTransform(multiplier_range=(0.75, 1.25),
                                          p_per_sample=0.15))

    if params.get("do_additive_brightness"):
        tr_transforms.append(
            BrightnessTransform(
                params.get("additive_brightness_mu"),
                params.get("additive_brightness_sigma"),
                True,
                p_per_sample=params.get("additive_brightness_p_per_sample"),
                p_per_channel=params.get("additive_brightness_p_per_channel")))

    tr_transforms.append(ContrastAugmentationTransform(p_per_sample=0.15))
    tr_transforms.append(
        SimulateLowResolutionTransform(zoom_range=(0.5, 1),
                                       per_channel=True,
                                       p_per_channel=0.5,
                                       order_downsample=0,
                                       order_upsample=3,
                                       p_per_sample=0.25,
                                       ignore_axes=ignore_axes))
    tr_transforms.append(
        GammaTransform(params.get("gamma_range"),
                       True,
                       True,
                       retain_stats=params.get("gamma_retain_stats"),
                       p_per_sample=0.1))  # inverted gamma

    if params.get("do_gamma"):
        tr_transforms.append(
            GammaTransform(params.get("gamma_range"),
                           False,
                           True,
                           retain_stats=params.get("gamma_retain_stats"),
                           p_per_sample=params["p_gamma"]))

    if params.get("do_mirror") or params.get("mirror"):
        tr_transforms.append(MirrorTransform(params.get("mirror_axes")))

    if params.get("mask_was_used_for_normalization") is not None:
        mask_was_used_for_normalization = params.get(
            "mask_was_used_for_normalization")
        tr_transforms.append(
            MaskTransform(mask_was_used_for_normalization,
                          mask_idx_in_seg=0,
                          set_outside_to=0))

    tr_transforms.append(RemoveLabelTransform(-1, 0))

    if params.get("move_last_seg_chanel_to_data") is not None and params.get(
            "move_last_seg_chanel_to_data"):
        tr_transforms.append(
            MoveSegAsOneHotToData(1, params.get("all_segmentation_labels"),
                                  'seg', 'data'))
        if params.get(
                "cascade_do_cascade_augmentations") is not None and params.get(
                    "cascade_do_cascade_augmentations"):
            if params.get("cascade_random_binary_transform_p") > 0:
                tr_transforms.append(
                    ApplyRandomBinaryOperatorTransform(
                        channel_idx=list(
                            range(-len(params.get("all_segmentation_labels")),
                                  0)),
                        p_per_sample=params.get(
                            "cascade_random_binary_transform_p"),
                        key="data",
                        strel_size=params.get(
                            "cascade_random_binary_transform_size"),
                        p_per_label=params.get(
                            "cascade_random_binary_transform_p_per_label")))
            if params.get("cascade_remove_conn_comp_p") > 0:
                tr_transforms.append(
                    RemoveRandomConnectedComponentFromOneHotEncodingTransform(
                        channel_idx=list(
                            range(-len(params.get("all_segmentation_labels")),
                                  0)),
                        key="data",
                        p_per_sample=params.get("cascade_remove_conn_comp_p"),
                        fill_with_other_class_p=params.get(
                            "cascade_remove_conn_comp_max_size_percent_threshold"
                        ),
                        dont_do_if_covers_more_than_X_percent=params.get(
                            "cascade_remove_conn_comp_fill_with_other_class_p")
                    ))

    tr_transforms.append(RenameTransform('seg', 'target', True))

    if regions is not None:
        tr_transforms.append(
            ConvertSegmentationToRegionsTransform(regions, 'target', 'target'))

    if deep_supervision_scales is not None:
        if soft_ds:
            assert classes is not None
            tr_transforms.append(
                DownsampleSegForDSTransform3(deep_supervision_scales, 'target',
                                             'target', classes))
        else:
            tr_transforms.append(
                DownsampleSegForDSTransform2(deep_supervision_scales,
                                             0,
                                             input_key='target',
                                             output_key='target'))

    tr_transforms.append(NumpyToTensor(['data', 'target'], 'float'))
    tr_transforms = Compose(tr_transforms)

    if use_nondetMultiThreadedAugmenter:
        if NonDetMultiThreadedAugmenter is None:
            raise RuntimeError(
                'NonDetMultiThreadedAugmenter is not yet available')
        batchgenerator_train = NonDetMultiThreadedAugmenter(
            dataloader_train,
            tr_transforms,
            params.get('num_threads'),
            params.get("num_cached_per_thread"),
            seeds=seeds_train,
            pin_memory=pin_memory)
    else:
        batchgenerator_train = MultiThreadedAugmenter(
            dataloader_train,
            tr_transforms,
            params.get('num_threads'),
            params.get("num_cached_per_thread"),
            seeds=seeds_train,
            pin_memory=pin_memory)
    # batchgenerator_train = SingleThreadedAugmenter(dataloader_train, tr_transforms)
    # import IPython;IPython.embed()

    val_transforms = []
    val_transforms.append(RemoveLabelTransform(-1, 0))
    if params.get("selected_data_channels") is not None:
        val_transforms.append(
            DataChannelSelectionTransform(
                params.get("selected_data_channels")))
    if params.get("selected_seg_channels") is not None:
        val_transforms.append(
            SegChannelSelectionTransform(params.get("selected_seg_channels")))

    if params.get("move_last_seg_chanel_to_data") is not None and params.get(
            "move_last_seg_chanel_to_data"):
        val_transforms.append(
            MoveSegAsOneHotToData(1, params.get("all_segmentation_labels"),
                                  'seg', 'data'))

    val_transforms.append(RenameTransform('seg', 'target', True))

    if regions is not None:
        val_transforms.append(
            ConvertSegmentationToRegionsTransform(regions, 'target', 'target'))

    if deep_supervision_scales is not None:
        if soft_ds:
            assert classes is not None
            val_transforms.append(
                DownsampleSegForDSTransform3(deep_supervision_scales, 'target',
                                             'target', classes))
        else:
            val_transforms.append(
                DownsampleSegForDSTransform2(deep_supervision_scales,
                                             0,
                                             input_key='target',
                                             output_key='target'))

    val_transforms.append(NumpyToTensor(['data', 'target'], 'float'))
    val_transforms = Compose(val_transforms)

    if use_nondetMultiThreadedAugmenter:
        if NonDetMultiThreadedAugmenter is None:
            raise RuntimeError(
                'NonDetMultiThreadedAugmenter is not yet available')
        batchgenerator_val = NonDetMultiThreadedAugmenter(
            dataloader_val,
            val_transforms,
            max(params.get('num_threads') // 2, 1),
            params.get("num_cached_per_thread"),
            seeds=seeds_val,
            pin_memory=pin_memory)
    else:
        batchgenerator_val = MultiThreadedAugmenter(
            dataloader_val,
            val_transforms,
            max(params.get('num_threads') // 2, 1),
            params.get("num_cached_per_thread"),
            seeds=seeds_val,
            pin_memory=pin_memory)
    # batchgenerator_val = SingleThreadedAugmenter(dataloader_val, val_transforms)

    return batchgenerator_train, batchgenerator_val
Ejemplo n.º 7
0
    def get_train_transforms(self) -> List[AbstractTransform]:
        # used for transpost and rot90
        matching_axes = np.array(
            [sum([i == j for j in self.patch_size]) for i in self.patch_size])
        valid_axes = list(np.where(matching_axes == np.max(matching_axes))[0])

        tr_transforms = []

        if self.data_aug_params['selected_seg_channels'] is not None:
            tr_transforms.append(
                SegChannelSelectionTransform(
                    self.data_aug_params['selected_seg_channels']))

        if self.do_dummy_2D_aug:
            ignore_axes = (0, )
            tr_transforms.append(Convert3DTo2DTransform())
            patch_size_spatial = self.patch_size[1:]
        else:
            patch_size_spatial = self.patch_size
            ignore_axes = None

        tr_transforms.append(
            SpatialTransform(
                patch_size_spatial,
                patch_center_dist_from_border=None,
                do_elastic_deform=False,
                do_rotation=True,
                angle_x=self.data_aug_params["rotation_x"],
                angle_y=self.data_aug_params["rotation_y"],
                angle_z=self.data_aug_params["rotation_z"],
                p_rot_per_axis=0.5,
                do_scale=True,
                scale=self.data_aug_params['scale_range'],
                border_mode_data="constant",
                border_cval_data=0,
                order_data=3,
                border_mode_seg="constant",
                border_cval_seg=-1,
                order_seg=1,
                random_crop=False,
                p_el_per_sample=0.2,
                p_scale_per_sample=0.2,
                p_rot_per_sample=0.4,
                independent_scale_for_each_axis=True,
            ))

        if self.do_dummy_2D_aug:
            tr_transforms.append(Convert2DTo3DTransform())

        if np.any(matching_axes > 1):
            tr_transforms.append(
                Rot90Transform((0, 1, 2, 3),
                               axes=valid_axes,
                               data_key='data',
                               label_key='seg',
                               p_per_sample=0.5), )

        if np.any(matching_axes > 1):
            tr_transforms.append(
                TransposeAxesTransform(valid_axes,
                                       data_key='data',
                                       label_key='seg',
                                       p_per_sample=0.5))

        tr_transforms.append(
            OneOfTransform([
                MedianFilterTransform((2, 8),
                                      same_for_each_channel=False,
                                      p_per_sample=0.2,
                                      p_per_channel=0.5),
                GaussianBlurTransform((0.3, 1.5),
                                      different_sigma_per_channel=True,
                                      p_per_sample=0.2,
                                      p_per_channel=0.5)
            ]))

        tr_transforms.append(GaussianNoiseTransform(p_per_sample=0.1))

        tr_transforms.append(
            BrightnessTransform(0,
                                0.5,
                                per_channel=True,
                                p_per_sample=0.1,
                                p_per_channel=0.5))

        tr_transforms.append(
            OneOfTransform([
                ContrastAugmentationTransform(contrast_range=(0.5, 2),
                                              preserve_range=True,
                                              per_channel=True,
                                              data_key='data',
                                              p_per_sample=0.2,
                                              p_per_channel=0.5),
                ContrastAugmentationTransform(contrast_range=(0.5, 2),
                                              preserve_range=False,
                                              per_channel=True,
                                              data_key='data',
                                              p_per_sample=0.2,
                                              p_per_channel=0.5),
            ]))

        tr_transforms.append(
            SimulateLowResolutionTransform(zoom_range=(0.25, 1),
                                           per_channel=True,
                                           p_per_channel=0.5,
                                           order_downsample=0,
                                           order_upsample=3,
                                           p_per_sample=0.15,
                                           ignore_axes=ignore_axes))

        tr_transforms.append(
            GammaTransform((0.7, 1.5),
                           invert_image=True,
                           per_channel=True,
                           retain_stats=True,
                           p_per_sample=0.1))
        tr_transforms.append(
            GammaTransform((0.7, 1.5),
                           invert_image=True,
                           per_channel=True,
                           retain_stats=True,
                           p_per_sample=0.1))

        if self.do_mirroring:
            tr_transforms.append(MirrorTransform(self.mirror_axes))

        tr_transforms.append(
            BlankRectangleTransform([[max(1, p // 10), p // 3]
                                     for p in self.patch_size],
                                    rectangle_value=np.mean,
                                    num_rectangles=(1, 5),
                                    force_square=False,
                                    p_per_sample=0.4,
                                    p_per_channel=0.5))

        tr_transforms.append(
            BrightnessGradientAdditiveTransform(
                lambda x, y: np.exp(
                    np.random.uniform(np.log(x[y] // 6), np.log(x[y]))),
                (-0.5, 1.5),
                max_strength=lambda x, y: np.random.uniform(-5, -1)
                if np.random.uniform() < 0.5 else np.random.uniform(1, 5),
                mean_centered=False,
                same_for_all_channels=False,
                p_per_sample=0.3,
                p_per_channel=0.5))

        tr_transforms.append(
            LocalGammaTransform(
                lambda x, y: np.exp(
                    np.random.uniform(np.log(x[y] // 6), np.log(x[y]))),
                (-0.5, 1.5),
                lambda: np.random.uniform(0.01, 0.8)
                if np.random.uniform() < 0.5 else np.random.uniform(1.5, 4),
                same_for_all_channels=False,
                p_per_sample=0.3,
                p_per_channel=0.5))

        tr_transforms.append(
            SharpeningTransform(strength=(0.1, 1),
                                same_for_each_channel=False,
                                p_per_sample=0.2,
                                p_per_channel=0.5))

        if any(self.use_mask_for_norm.values()):
            tr_transforms.append(
                MaskTransform(self.use_mask_for_norm,
                              mask_idx_in_seg=0,
                              set_outside_to=0))

        tr_transforms.append(RemoveLabelTransform(-1, 0))

        if self.data_aug_params["move_last_seg_chanel_to_data"]:
            all_class_labels = np.arange(1, self.num_classes)
            tr_transforms.append(
                MoveSegAsOneHotToData(1, all_class_labels, 'seg', 'data'))
            if self.data_aug_params["cascade_do_cascade_augmentations"]:
                tr_transforms.append(
                    ApplyRandomBinaryOperatorTransform(channel_idx=list(
                        range(-len(all_class_labels), 0)),
                                                       p_per_sample=0.4,
                                                       key="data",
                                                       strel_size=(1, 8),
                                                       p_per_label=1))

                tr_transforms.append(
                    RemoveRandomConnectedComponentFromOneHotEncodingTransform(
                        channel_idx=list(range(-len(all_class_labels), 0)),
                        key="data",
                        p_per_sample=0.2,
                        fill_with_other_class_p=0.15,
                        dont_do_if_covers_more_than_X_percent=0))

        tr_transforms.append(RenameTransform('seg', 'target', True))

        if self.regions is not None:
            tr_transforms.append(
                ConvertSegmentationToRegionsTransform(self.regions, 'target',
                                                      'target'))

        if self.deep_supervision_scales is not None:
            tr_transforms.append(
                DownsampleSegForDSTransform2(self.deep_supervision_scales,
                                             0,
                                             input_key='target',
                                             output_key='target'))

        tr_transforms.append(NumpyToTensor(['data', 'target'], 'float'))
        return tr_transforms
Ejemplo n.º 8
0
# in order to use neptune logging:
# export NEPTUNE_API_TOKEN = '...' !!!
logging.getLogger().setLevel('INFO')
source_files = [__file__]
if hparams.config:
    source_files.append(hparams.config)
neptune_logger = NeptuneLogger(project_name=hparams.neptune_project,
                               params=vars(hparams),
                               experiment_name=hparams.experiment_name,
                               tags=[hparams.experiment_name],
                               upload_source_files=source_files)
tb_logger = loggers.TensorBoardLogger(hparams.log_dir)

transform = Compose([
    BrightnessTransform(mu=0.0, sigma=0.3, data_key='data'),
    GammaTransform(gamma_range=(0.7, 1.3), data_key='data'),
    ContrastAugmentationTransform(contrast_range=(0.3, 1.7), data_key='data')
])

with open(hparams.train_set, 'r') as keyfile:
    train_keys = [l.strip() for l in keyfile.readlines()]
print(train_keys)

with open(hparams.val_set, 'r') as keyfile:
    val_keys = [l.strip() for l in keyfile.readlines()]
print(val_keys)

train_ds = MedDataset(hparams.data_path,
                      train_keys,
                      hparams.patches_per_subject,
                      hparams.patch_size,
Ejemplo n.º 9
0
    border_mode_data='constant',
    border_cval_data=0,
    border_mode_seg='constant',
    border_cval_seg=0,
    order_seg=1,
    order_data=3,
    random_crop=False,
    p_el_per_sample=0.1,
    p_rot_per_sample=0.1,
    p_scale_per_sample=0.1)

my_transforms.append(spatial_transform)
my_transforms.append(MirrorTransform(axes=(0, 1, 2)))
my_transforms.append(
    GammaTransform(gamma_range=(0.7, 1.),
                   invert_image=False,
                   per_channel=True,
                   p_per_sample=0.1))

all_transforms = Compose(my_transforms)

train_loader = SingleThreadedAugmenter(
    batchgen, all_transforms
)  #data loader for training, applying on the fly transformation

# add other data loaders
test_loader = torch.utils.data.DataLoader(
    dataset_test,
    batch_size=1,
    shuffle=False,
    num_workers=0,
)
             },
             up_kwargs={
                 'attention': True
             },
             encode_block=ResBlockStack,
             encode_kwargs_fn=encode_kwargs_fn,
             decode_block=ResBlock).cuda()

patch_size = (160, 160, 80)
optimizer = optim.Adam(model.parameters(), lr=1e-4)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                 factor=0.2,
                                                 patience=30)

tr_transform = Compose([
    GammaTransform((0.9, 1.1)),
    ContrastAugmentationTransform((0.9, 1.1)),
    BrightnessMultiplicativeTransform((0.9, 1.1)),
    MirrorTransform(axes=[0]),
    SpatialTransform_2(
        patch_size,
        (90, 90, 50),
        random_crop=True,
        do_elastic_deform=True,
        deformation_scale=(0, 0.05),
        do_rotation=True,
        angle_x=(-0.1 * np.pi, 0.1 * np.pi),
        angle_y=(0, 0),
        angle_z=(0, 0),
        do_scale=True,
        scale=(0.9, 1.1),
Ejemplo n.º 11
0
from torchvision import transforms

train_transform = transforms.Compose([
    # mt_transforms.CenterCrop2D((200, 200)),
    mt_transforms.ElasticTransform(alpha_range=(28.0, 30.0),
                                   sigma_range=(3.5, 4.0),
                                   p=0.3),
    mt_transforms.RandomAffine(degrees=4.6,
                               scale=(0.98, 1.02),
                               translate=(0.03, 0.03)),
    mt_transforms.RandomTensorChannelShift((-0.10, 0.10)),
    mt_transforms.ToTensor()
    # mt_transforms.NormalizeInstance(),
])

gamma_t = GammaTransform(data_key="img", gamma_range=(0.1, 10))

mirror_t = MirrorTransform(data_key="img", label_key="seg")

spatial_t = SpatialTransform(patch_size=(8, 8, 8),
                             data_key="img",
                             label_key="seg")

gauss_noise_t = GaussianNoiseTransform(data_key="img", noise_variance=(0, 1))

zoom_t = ZoomTransform(zoom_factors=2, data_key="img")


def show_basic(x, gt, info=None):
    if info is not None:
        print("Test for " + info)
Ejemplo n.º 12
0
 def run(self, img_data, seg_data):
     # Define label for segmentation for segmentation augmentation
     if self.seg_augmentation: seg_label = "seg"
     else: seg_label = "class"
     # Create a parser for the batchgenerators module
     data_generator = DataParser(img_data, seg_data, seg_label)
     # Initialize empty transform list
     transforms = []
     # Add mirror augmentation
     if self.mirror:
         aug_mirror = MirrorTransform(axes=self.config_mirror_axes)
         transforms.append(aug_mirror)
     # Add contrast augmentation
     if self.contrast:
         aug_contrast = ContrastAugmentationTransform(
             self.config_contrast_range,
             preserve_range=self.config_contrast_preserverange,
             per_channel=self.coloraug_per_channel,
             p_per_sample=self.config_p_per_sample)
         transforms.append(aug_contrast)
     # Add brightness augmentation
     if self.brightness:
         aug_brightness = BrightnessMultiplicativeTransform(
             self.config_brightness_range,
             per_channel=self.coloraug_per_channel,
             p_per_sample=self.config_p_per_sample)
         transforms.append(aug_brightness)
     # Add gamma augmentation
     if self.gamma:
         aug_gamma = GammaTransform(self.config_gamma_range,
                                    invert_image=False,
                                    per_channel=self.coloraug_per_channel,
                                    retain_stats=True,
                                    p_per_sample=self.config_p_per_sample)
         transforms.append(aug_gamma)
     # Add gaussian noise augmentation
     if self.gaussian_noise:
         aug_gaussian_noise = GaussianNoiseTransform(
             self.config_gaussian_noise_range,
             p_per_sample=self.config_p_per_sample)
         transforms.append(aug_gaussian_noise)
     # Add spatial transformations as augmentation
     # (rotation, scaling, elastic deformation)
     if self.rotations or self.scaling or self.elastic_deform or \
         self.cropping:
         # Identify patch shape (full image or cropping)
         if self.cropping: patch_shape = self.cropping_patch_shape
         else: patch_shape = img_data[0].shape[0:-1]
         # Assembling the spatial transformation
         aug_spatial_transform = SpatialTransform(
             patch_shape, [i // 2 for i in patch_shape],
             do_elastic_deform=self.elastic_deform,
             alpha=self.config_elastic_deform_alpha,
             sigma=self.config_elastic_deform_sigma,
             do_rotation=self.rotations,
             angle_x=self.config_rotations_angleX,
             angle_y=self.config_rotations_angleY,
             angle_z=self.config_rotations_angleZ,
             do_scale=self.scaling,
             scale=self.config_scaling_range,
             border_mode_data='constant',
             border_cval_data=0,
             border_mode_seg='constant',
             border_cval_seg=0,
             order_data=3,
             order_seg=0,
             p_el_per_sample=self.config_p_per_sample,
             p_rot_per_sample=self.config_p_per_sample,
             p_scale_per_sample=self.config_p_per_sample,
             random_crop=self.cropping)
         # Append spatial transformation to transformation list
         transforms.append(aug_spatial_transform)
     # Compose the batchgenerators transforms
     all_transforms = Compose(transforms)
     # Assemble transforms into a augmentation generator
     augmentation_generator = SingleThreadedAugmenter(
         data_generator, all_transforms)
     # Perform the data augmentation x times (x = cycles)
     aug_img_data = None
     aug_seg_data = None
     for i in range(0, self.cycles):
         # Run the computation process for the data augmentations
         augmentation = next(augmentation_generator)
         # Access augmentated data from the batchgenerators data structure
         if aug_img_data is None and aug_seg_data is None:
             aug_img_data = augmentation["data"]
             aug_seg_data = augmentation[seg_label]
         # Concatenate the new data augmentated data with the cached data
         else:
             aug_img_data = np.concatenate(
                 (augmentation["data"], aug_img_data), axis=0)
             aug_seg_data = np.concatenate(
                 (augmentation[seg_label], aug_seg_data), axis=0)
     # Transform data from channel-first back to channel-last structure
     # Data structure channel-first 3D:  (batch, channel, x, y, z)
     # Data structure channel-last 3D:   (batch, x, y, z, channel)
     aug_img_data = np.moveaxis(aug_img_data, 1, -1)
     aug_seg_data = np.moveaxis(aug_seg_data, 1, -1)
     # Return augmentated image and segmentation data
     return aug_img_data, aug_seg_data