Ejemplo n.º 1
0
def spamTest():
    docList = []; classList=[]; fullText=[]
    for i in range(1, 26):
        wordList = textParse(open('./email/spam/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = textParse(open('./email/ham/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocalList = bayes.createVocabList(docList)
    trainingSet = range(50); testSet=[]
    for i in range(10):
        randIndex = int(random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex])
    trainMat=[];trainClass=[];
    for docIndex in trainingSet:
        trainMat.append(bayes.addWordInList(vocalList, docList[docIndex]))
        trainClass.append(classList[docIndex])
    p0V,p1V,ps = bayes.trainNB0(array(trainMat), array(trainClass))
    errorCount = 0
    for doc in testSet:
        wordV = bayes.addWordInList(vocalList, docList[doc])
        if bayes.classifyNB(array(wordV), p0V, p1V, ps) != classList[doc]:
            errorCount+=1
    print 'err count is %d' % errorCount
Ejemplo n.º 2
0
def spamTest():
    docList = []
    classList = []
    fullText = []
    for i in range(1, 26):
        wordList = textParse(open('./email/spam/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = textParse(open('./email/ham/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocalList = bayes.createVocabList(docList)
    trainingSet = range(50)
    testSet = []
    for i in range(10):
        randIndex = int(random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del (trainingSet[randIndex])
    trainMat = []
    trainClass = []
    for docIndex in trainingSet:
        trainMat.append(bayes.addWordInList(vocalList, docList[docIndex]))
        trainClass.append(classList[docIndex])
    p0V, p1V, ps = bayes.trainNB0(array(trainMat), array(trainClass))
    errorCount = 0
    for doc in testSet:
        wordV = bayes.addWordInList(vocalList, docList[doc])
        if bayes.classifyNB(array(wordV), p0V, p1V, ps) != classList[doc]:
            errorCount += 1
    print 'err count is %d' % errorCount
Ejemplo n.º 3
0
def spamTest():
    docList = []
    classList = []
    fullText = []
    for i in range(1, 26):
        wordList = textParse(open('email/spam/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = textParse(open('email/ham/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = createVocabList(docList)
    trainingSet = range(50)
    testSet = []
    for i in range(10):
        randIndex = int(random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del (trainingSet[randIndex])
    trainingMat = []
    trainingClasses = []
    for docIndex in trainingSet:
        trainingMat.append(setOfWords2Vec(vocabList, docList[docIndex]))
        trainingClasses.append(classList[docIndex])
    p0V, p1V, pSpam = trainNBO(trainingMat, trainingClasses)
    errorCount = 0
    for docIndex in testSet:
        wordVector = setOfWords2Vec(vocabList, docList[docIndex])
        if classifyNB(wordVector, p0V, p1V, pSpam) != classList[docIndex]:
            errorCount += 1
    print ("the error rate is: ", float(errorCount)/len(testSet))
def spamTest():
    docList = []; classList = []; fullText = []
    for i in range(1,26):
        wordList = textParse(open('email/spam/%d.txt' %i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = textParse(open('email/ham/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = bayes.createVocabList(docList)
    # range对象不支持del,所以要转成list
    trainingSet = list(range(50)); testSet = []
    # 随机取10组数据作为测试机
    for i in range(10):  # 循环10次
        # 在0到49之间(包括0,49)取随机整数
        randIndex = int(random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex])  # 删除数组的引用
    # 把剩下的40组数据作为训练集
    trainMat = []; trainClasses = []
    for docIndex in trainingSet:  # 由于上面删除了10个引用,还剩40个
        trainMat.append(bayes.setOfWords2Vec(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V, p1V, pSpam = bayes.trainNBO(array(trainMat), array(trainClasses))
    errorCount = 0
    for docIndex in testSet:
        # 转成词向量
        wordVector = bayes.setOfWords2Vec(vocabList, docList[docIndex])
        if bayes.classifyNB(wordVector, p0V, p1V, pSpam) != classList[docIndex]:
            errorCount += 1
    print('the error rate is: ', float(errorCount)/len(testSet))
Ejemplo n.º 5
0
def testingNB():
    # 1. 加载数据集
    listOPosts, listClasses = bayes.loadDataSet()
    print('listOPosts: ', listOPosts,
          '\n************************************\nlistClasses: ', listClasses)

    # 2. 创建单词集合
    myVocabList = bayes.createVocabList(listOPosts)

    # 3. 计算单词是否出现并创建数据矩阵
    trainMat = []
    for postinDoc in listOPosts:
        # 返回m * len(myVocabList)的矩阵,记录的都是0,1信息
        # print('postinDoc:', postinDoc)
        trainMat.append(bayes.setOfWords2Vec(myVocabList, postinDoc))

    # 4. 训练数据

    p0V, p1V, pAb = trainNB0(np.array(trainMat), np.array(listClasses))

    # 5. 测试数据
    testEntry = ['love', 'my', 'dalmatioin']
    thisDoc = np.array(bayes.setOfWords2Vec(myVocabList, testEntry))
    print(testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb))

    testEntry = ['stupid', 'garbage']
    thisDoc = np.array(bayes.setOfWords2Vec(myVocabList, testEntry))
    print(testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb))
Ejemplo n.º 6
0
def spamTest():
    docList = []
    classList = []
    fullText = []
    for i in range(1, 26):
        # 导入并解析文本
        wordList = textParse(open('email/spam/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = textParse(open('email/ham/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = bayes.createVocabList(docList)
    trainingSet = range(50)
    testSet = []
    # 随机构建训练集
    for i in range(10):
        randIndex = int(random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del (trainingSet[randIndex])
    trainMat = []
    trainClasses = []
    for docIndex in trainingSet:
        trainMat.append(bayes.setOfWords2Vec(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V, p1V, pSpam = bayes.trainNB0(array(trainMat), array(trainClasses))
    errorCount = 0
    # 对测试集分类
    for docIndex in testSet:
        wordVector = bayes.setOfWords2Vec(vocabList, docList[docIndex])
        if bayes.classifyNB(array(wordVector), p0V, p1V, pSpam) != classList[docIndex]:
            errorCount += 1
    print 'the error rate is:', float(errorCount) / len(testSet)
Ejemplo n.º 7
0
def spamTest():
    docList = []
    classList = []
    fullText = []
    for i in range(1, 26):
        wordList = textParse(open('xxx/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = textParse(open('xxx/%d,txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = bayes.createVocabList(docList)
    trainingSet = range(50)
    testSet = []
    for i in range(10):
        randIndex = int(random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex])
    trainMat = []
    trainClasses = []
    for docIndex in trainingSet:
        trainMat.append(bayes.setOfWords2Vec(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V, p1V, pSpam = bayes.trainNB0(array(trainMat), array(trainClasses))
    errorCount = 0
    for docIndex in testSet:
        wordVector = bayes.setOfWord2Vec(vocabList, docList[docIndex])
        if bayes.classifyNB(array(wordVector), p0V, p1V, pSpam) != classList[docIndex]:
            errorCount += 1
    print 'the error rate is: ', float(errorCount) / len(testSet)
Ejemplo n.º 8
0
def spamTest():
    docList = []
    classList =[]
    fullText = []
    for i in range(1, 26):
        wordList = bayes.textParse(open('email/spam/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = bayes.textParse(open('email/ham/%d.txt' % i,errors='ignore').read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = bayes.createVocabList(docList)
    dataSet = list(range(50))
    testSet = []
    for i in range(10):
        randIndex = int(np.random.uniform(0, len(dataSet)))
        testSet.append(dataSet[randIndex])
        del(dataSet[randIndex])
    trainMat = []
    trainClasses = []
    for doc in dataSet:
        trainMat.append(bayes.bagOfWord2Vec(vocabList, docList[doc]))
        trainClasses.append(classList[doc])
    pAbusive, p1Vect, p0Vect = bayes.trainNB0(trainMat, trainClasses)
    errorCount = 0.0
    for i in testSet:
        vec2Classify = bayes.bagOfWord2Vec(vocabList, docList[i])
        if bayes.classifyNB(vec2Classify, p1Vect, p0Vect, pAbusive) != classList[i]:
            errorCount += 1
    return errorCount/10
Ejemplo n.º 9
0
 def test_bagOfWords2VecMN(self):
     listOPosts, listClasses = bayes.loadDataSet()
     myVocabList = bayes.createVocabList(listOPosts)
     features = bayes.bagOfWords2VecMN(myVocabList, listOPosts[0])
     expected = [
         0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0,
         0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1
     ]
     self.assertEqual(features, expected)
Ejemplo n.º 10
0
def test_train():
    listOposts,listClasses=bayes.loadDataSet()
    myVocabList=bayes.createVocabList(listOposts)
    trainMat=[]
    for postinDoc in listOposts:
        trainMat.append(bayes.setOfWords2Vec(myVocabList,postinDoc))
    p0v,p1v,pab=bayes.trainNB0(trainMat,listClasses)

    print p1v
Ejemplo n.º 11
0
 def test_createVocabList(self):
     dataSet = [
         ['stupid', 'garbage'],
         ['love', 'puppies']
     ]
     expected = ['stupid', 'garbage', 'love', 'puppies']
     word_list = bayes.createVocabList(dataSet)
     self.assertTrue(set(word_list) == set(expected))
     # don't want duplicate elements
     self.assertTrue(len(word_list) == len(expected))
Ejemplo n.º 12
0
 def test_setOfWords2Vec(self):
     # listOPosts is actually...
     # listClasses is actually a list of labels for the data in listOPosts
     listOPosts, listClasses = bayes.loadDataSet()
     myVocabList = bayes.createVocabList(listOPosts)
     features = bayes.setOfWords2Vec(myVocabList, listOPosts[0])
     expected = [
         0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0,
         0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1
     ]
     self.assertEqual(features, expected)
Ejemplo n.º 13
0
    def test_createVocablist(self):
        data_set, _ = bayes.loadDataSet()
        vocab_list = bayes.createVocabList(data_set)
        print("\n vocab_list == %s" % (vocab_list))

        # 根据数据集第0行输出对应的向量表
        # (即,第0行中所有单词,在整个data_set词汇表中出现的单词位置设置为1)
        vec = bayes.setOfWords2Vec(vocab_list, data_set[0])
        print("\n vec == %s" % (vec))
        vec = bayes.setOfWords2Vec(vocab_list, data_set[3])
        print("\n vec == %s" % (vec))
Ejemplo n.º 14
0
    def test_train_nb(self):
        data_set, listClasses = bayes.loadDataSet()
        vocab_list = bayes.createVocabList(data_set)
        print("\n vocab_list == %s" % (vocab_list))

        trainMat = []
        for postinDoc in data_set:
            trainMat.append(bayes.setOfWords2Vec(vocab_list, postinDoc))

        p0Vect, p1Vect, pAbusive = bayes.trainNB0(trainMat, listClasses)
        print("\n p0Vect == %s\n p1Vect == %s\n pAbusive == %s\n" %
              (p0Vect, p1Vect, pAbusive))
Ejemplo n.º 15
0
def localWords(feed1, feed0):
    import feedparser
    docList = []
    classList = []
    fullText = []
    minLen = min(len(feed1['entries']), len(feed0['entries']))
    # print('minlen=%d'%minLen)
    for i in range(minLen):
        # visit one rss source every time
        wordList = bayes.textParse(feed1['entries'][i]['summary'])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)

        # visit rss 0
        wordList = bayes.textParse(feed0['entries'][i]['summary'])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)

        # remove most frequent words
        vocabList = bayes.createVocabList(docList)
        top30words = calcMostFreq(vocabList, fullText)
        for pairW in top30words:
            if pairW[0] in vocabList:
                vocabList.remove(pairW[0])
        trainingSet = list(range(2 * minLen))
        testSet = []
        for i in range(20):
            randIdx = int(random.uniform(0, len(trainingSet)))
            testSet.append(trainingSet[randIdx])
            del (trainingSet[randIdx])

    trainMat = []
    trainClasses = []
    for docIdx in trainingSet:
        # print("doc idx:%d, len=%d" %( docIdx, len(docList)))
        trainMat.append(bayes.bagOfWords2VecMN(vocabList, docList[docIdx]))
        trainClasses.append(classList[docIdx])

    p0V, p1V, pSpam = bayes.trainNB0(numpy.array(trainMat),
                                     numpy.array(trainClasses))

    errorCount = 0
    for docIdx in testSet:
        wordVector = bayes.bagOfWords2VecMN(vocabList, docList[docIdx])
        if bayes.classifyNB(numpy.array(wordVector), p0V, p1V,
                            pSpam) != classList[docIdx]:
            errorCount += 1
    print('the error rate is: %.2f' % (float(errorCount) / len(testSet)))

    return vocabList, p0V, p1V
Ejemplo n.º 16
0
def testingNB():
    listOPosts, listClasses = loadDataSet()
    myVocabList = createVocabList(listOPosts)
    trainMat = []
    for postinDoc in listOPosts:
        trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
    p0V, p1V, pAb = trainNB0(array(trainMat), array(listClasses))
    testEntry = ['love', 'my', 'dalmation']
    tesDoc = array(setOfWords2Vec(myVocabList, testEntry))
    print(testEntry, 'classified as: ', classifyNB(tesDoc, p0V, p1V, pAb))
    testEntry = ['stupid', 'garbage']
    tesDoc = array(setOfWords2Vec(myVocabList, testEntry))
    print(testEntry, 'classified as: ', classifyNB(tesDoc, p0V, p1V, pAb))
Ejemplo n.º 17
0
def testSimpTrain():
    listOPosts, listClasses = bayes.loadDataSet()
    myVocabList = bayes.createVocabList(listOPosts)
    trainMat = []
    for postinDoc in listOPosts:
        trainMat.append(bayes.setOfWords2Vec(myVocabList, postinDoc))

    print "trainMat:", trainMat
    print "listClasses:", listClasses
    p0V,p1V,pAb = bayes.trainNB0(trainMat, listClasses)
    print "pAb:",pAb
    print "p0V:",p0V
    print "p1V:",p1V
Ejemplo n.º 18
0
def testingNB():
    listOPosts, listClasses = bayes.loadDataSet()
    myVocabList = bayes.createVocabList(listOPosts)
    trainMat = []
    for postinDoc in listOPosts:
        trainMat.append(bayes.setOfWords2Vec(myVocabList, postinDoc))
    p0V,p1V,pAb = bayes.trainNB0(trainMat, listClasses)

    testEntry = ['love', 'my', 'dalmation', 'stupid']
    thisDoc = array(bayes.setOfWords2Vec(myVocabList, testEntry))
    print testEntry,'classified as: ', bayes.classifyNB(thisDoc, p0V, p1V, pAb)
    testEntry = ['quit', 'stupid']
    thisDoc = array(bayes.setOfWords2Vec(myVocabList, testEntry))
    print testEntry,'classified as: ', bayes.classifyNB(thisDoc, p0V, p1V, pAb)
Ejemplo n.º 19
0
def localWords(feed1, feed0):
    docList = []
    classList = []
    fullText = []
    minLen = min(len(feed1['entries']), len(feed0['entries']))
    for i in range(minLen):
        wordList = st.textParse(feed1['entries'][i]['summary'])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)

        wordList = st.textParse(feed0['entries'][i]['summary'])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)

    vocabList = bayes.createVocabList(docList)

    #remove top frequent words
    top30Words = calcMostFreq(vocabList, fullText)
    for pairW in top30Words:
        if pairW[0] in vocabList: vocabList.remove(pairW[0])

    #build training and testing set
    trainingSet = range(2*minLen)
    testSet = []
    for i in range(20):
        randIndex = int(random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex])

    trainMat = []
    trainClasses = []
    for docIndex in trainingSet:
        trainMat.append(bayes.bagOfWords2VecMN(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])

    #training
    p0V, p1V, pLocal = bayes.trainNB0(array(trainMat), array(trainClasses))

    #testing
    errorCount = 0
    for docIndex in testSet:
        wordVector = bayes.bagOfWords2VecMN(vocabList, docList[docIndex])
        if bayes.classifyNB(array(wordVector), p0V, p1V, pLocal) != classList[docIndex]:
            errorCount+=1

    print 'the error rate is: ', float(errorCount)/len(testSet)
    return vocabList, p0V, p1V
Ejemplo n.º 20
0
def spamTest():
    docList = []; classList = []; fullText = []
    # 读取spam下面的26个文件
    for i in range(1, 26):
        # 垃圾邮件的分类
        wordList = textParse(open('./data/spam/%d.txt' % i).read())
        # 添加到docList中
        docList.append(wordList)
        # extend是将list1的元素添加进来
        fullText.extend(wordList)
        classList.append(1)

        # 正常邮件的分类
        wordList = textParse(open('./data/ham/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)

    # 创建词汇表:需要文档列表 postingList。 读取所有的txt并进行词汇切分
    vocabList = bayes.createVocabList(docList)

    docMartix = np.zeros((50, len(vocabList)))
    i = 0
    for document in docList:
        # 需要将每个文档进行转换成向量
        docVec = bayes.setOfWords2Vec(vocabList, document)
        # 添加类别
        docMartix[i, :] = docVec
        i += 1
    print('词汇表长度:', len(vocabList))
    print('词汇表内容:', vocabList)
    print('文档内容:', docList[0], '\n词汇数', len(docList[0]))
    print('文档矩阵:', docMartix[0], '\n词汇数', sum(docMartix[0]))

    # 训练贝叶斯
    p0Vec, p1Vec, pAbusive = bayes.trainNBC(docMartix, classList)
    # print(p1Vec)
    # print(p0Vec)
    # print(pAbusive)
    # 测试函数
    i = 0
    errorCount = 0
    for document in docList:
        testVec = bayes.setOfWords2Vec(vocabList, document)
        testClass = bayes.classifyNBC(np.array(testVec), p0Vec, p1Vec, pAbusive)
        if testClass != classList[i]:
            errorCount += 1
        i += 1
    print('error percent: ', errorCount/float(len(docList)))
Ejemplo n.º 21
0
def testingNB():
    postList, classList = bayes.loadDataSet()
    myVocabList = bayes.createVocabList(postList)
    trainMat = []
    for post in postList:
        trainMat.append(bayes.setOfWords2Vec(myVocabList, post))
    p0V, p1V, pAb = bayes.trainNB0(trainMat, classList)
    testEntry = ['love', 'my', 'dalmation']
    thisDoc = bayes.setOfWords2Vec(myVocabList, testEntry)
    print testEntry, 'classified as: ', bayes.classifyNB(
        thisDoc, p0V, p1V, pAb)
    testEntry = ['stupid', 'garbage']
    thisDoc = bayes.setOfWords2Vec(myVocabList, testEntry)
    print testEntry, 'classified as: ', bayes.classifyNB(
        thisDoc, p0V, p1V, pAb)
Ejemplo n.º 22
0
 def test_trainNBO(self):
     listOPosts, listClasses = bayes.loadDataSet()
     myVocabList = bayes.createVocabList(listOPosts)
     trainMat = [] # list of lists, e.g., [[...], ..., [...]]
     for postinDoc in listOPosts:
         trainMat.append(bayes.setOfWords2Vec(myVocabList, postinDoc))
     # this is interesting as the names sent to the funtion imply
     # different types than the names received by the function.
     # Compare sending trainCategory to receiving listClasses.
     # There isn't even a hint of meaning between those two names
     # at the program (self-referentiall) perspective.
     # p0Vect, p1Vect, pAbusive = trainNBO(trainMatrix, trainCategory)
     p0V, p1V, pAb = bayes.trainNBO(trainMat, listClasses)
     # print p0V, p1V, pAb
     self.assertAlmostEqual(pAb, 0.5)
Ejemplo n.º 23
0
def localWord(feed1, feed0):
    docList = []
    classList = []
    fullText = []
    minLength = min(len(feed1['entries']), len(feed0['entries']))
    for i in range(minLength):
        wordList = bayes.textParse(feed1['entries'][i]['summary'])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = bayes.textParse(feed0['entries'][i]['summary'])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)

    vocabList = bayes.createVocabList(docList)
    top30words = calMostFeq(vocabList, fullText)
    for pairW in top30words:
        if (pairW[0] in vocabList):
            vocabList.remove(pairW[0])

    trainingSet = range(2 * minLength)
    testSet = []
    for i in range(20):
        randIndex = int(random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del (trainingSet[randIndex])

    trainMatrix = []
    trainClass = []

    for docIndex in trainingSet:
        trainMatrix.append(bayes.bagOfWordsToVec(vocabList, docList[docIndex]))
        trainClass.append(classList[docIndex])

    p0V, p1V, pSapm = bayes.trainNB0(trainMatrix, trainClass)

    errorCount = 0

    for docIndex in testSet:
        calculatedClass = bayes.classifyNB(
            bayes.bagOfWordsToVec(vocabList, docList[docIndex]), p0V, p1V,
            pSapm)
        if (calculatedClass != classList[docIndex]):
            errorCount += 1

    print "error rate is: ", float(errorCount) / len(testSet)
    return vocabList, p0V, p1V
Ejemplo n.º 24
0
def spamTest():
    '''
    对贝叶斯垃圾邮件分类器进行自动化处理
    对测试集中的每封邮件进行分类,若邮件分类错误,测错误数加1,最后返回总的错误百分比
    '''
    docList = []
    classList = []
    fullText = []
    for i in range(1, 26):
        #切分,解析数据,并归类为1的类别
        wordList = textParse(open('email/spam/%d.txt' % i).read())
        docList.append(wordList)
        classList.append(1)
        wordList = textParse(open('email/ham/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)

    #创建词汇表
    vocabList = bayes.createVocabList(docList)
    trainingSet = list(range(50))
    testSet = []
    #随机取10个邮件测试
    for i in range(10):
        #random.uniform(x,y)随机产生一个范围为x-y的实数
        randIndex = int(random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del (trainingSet[randIndex])
    trainMat = []
    trainClasses = []
    for docIndex in trainingSet:
        trainMat.append(bayes.setWords2Vec(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V, p1V, pSpam = bayes.trainNB0(array(trainMat), array(trainClasses))
    errorCount = 0
    errorDoc = []
    for docIndex in testSet:
        wordVector = bayes.setWords2Vec(vocabList, docList[docIndex])
        if bayes.classifyNB(array(wordVector), p0V, p1V,
                            pSpam) != classList[docIndex]:
            errorCount += 1
            errorDoc.append(docList[docIndex])
    print(vocabList)
    print(trainMat)
    print('the errorCount is: ', errorCount)
    print('the testSet length is: ', len(testSet))
    print('the error rate is; ', float(errorCount) / len(testSet))
    print(errorDoc)
Ejemplo n.º 25
0
def localWords(feed1, feed0):
    import feedparser
    docList = []
    classList = []
    fullText = []
    minLen = min(len(feed1['entries']), len(feed0['entries']))
    for i in range(minLen):
        # 每次访问一条RSS源
        wordList = bayes.textParse(feed1['entries'][i]['summary'])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = bayes.textParse(feed0['entries'][i]['summary'])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = bayes.createVocabList(docList)
    top30Words = calcMostFreq(vocabList, fullText)

    # 去掉出现频数最高的词
    for pairW in top30Words:
        if pairW[0] in vocabList:
            vocabList.remove(pairW[0])

    trainingSet = list(range(2 * minLen))
    testSet = []
    for i in range(20):
        randIndex = int(random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del (trainingSet[randIndex])

    trainMat = []
    trainClasses = []
    for docIndex in trainingSet:
        trainMat.append(bayes.bagOfWords2VecMN(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])

    p0V, p1V, pSpam = bayes.trainNB0(array(trainMat), array(trainClasses))
    errorCount = 0
    for docIndex in testSet:
        wordVector = bayes.bagOfWords2VecMN(vocabList, docList[docIndex])
        if bayes.classifyNB(array(wordVector), p0V, p1V,
                            pSpam) != classList[docIndex]:
            errorCount += 1

    print('the error rate is:', float(errorCount) / len(testSet))
    return vocabList, p0V, p1V
Ejemplo n.º 26
0
def testingNB():
    listOPosts, listClasses = bayes.loadDataSet()
    myVocabList = bayes.createVocabList(listOPosts)
    print(myVocabList)
    trainMat = []
    for postinDoc in listOPosts:

        trainMat.append(bayes.setOfWords2Vec(myVocabList, postinDoc))
    p0V, p1V, pAb = bayes.trainNB0(trainMat, listClasses)
    testEntry = ['love', 'my', 'dalmation']
    print
    thisDoc = np.array(bayes.setOfWords2Vec(myVocabList, testEntry))

    print(testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb))
    testEntry = ['stupid', 'garbage']
    thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry))
    print(testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb))
Ejemplo n.º 27
0
def testNB():
    listOPosts, listClasses = bayes.loadDataSet()  #加载数据
    myVocabList = bayes.createVocabList(listOPosts)
    trainMat = []
    for postinDoc in listOPosts:
        trainMat.append(bayes.setOfWords2Vec(myVocabList, postinDoc))
    p0V, p1V, pAb = bayes.trainNB0(trainMat, listClasses)

    resultLabel = {0: 'Not garbage', 1: 'Garbage'}
    testEntry = ['love', 'my', 'dalmation']
    thisDoc = array(bayes.setOfWords2Vec(myVocabList, testEntry))
    print(testEntry, 'classified as:',
          resultLabel[bayes.classifyNB(thisDoc, p0V, p1V, pAb)])

    testEntry = ['stupid', 'garbage']
    thisDoc = array(bayes.setOfWords2Vec(myVocabList, testEntry))
    print(testEntry, 'classified as:',
          resultLabel[bayes.classifyNB(thisDoc, p0V, p1V, pAb)])
Ejemplo n.º 28
0
def localWords(feed1, feed0):  # 两份RSS文件分别经feedparser解析,得到2个字典
    docList = []  # 一条条帖子组成的List, 帖子拆成了单词
    classList = []  # 标签列表
    fullText = []  # 所有帖子的所有单词组成的List
    # entries条目包含多个帖子,miNLen记录帖子数少的数目,怕越界
    minLen = min(len(feed1['entries']), len(feed0['entries']))
    for i in range(minLen):
        wordList = bayes.textParse(feed1['entries'][i]['summary'])  # 取出帖子内容,并拆成词
        docList.append(wordList)  # ['12','34'].append(['56','78']) ==> [ ['12','34'], ['56','78'] ]
        fullText.extend(wordList)  # ['12','34'].extend(['56','78']) ==> ['12','34','56','78']
        classList.append(1)  # 纽约的标签是1
        wordList = bayes.textParse(feed0['entries'][i]['summary'])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)  # 旧金山的标签是0

    vocabList = bayes.createVocabList(docList)  # 创建词汇表
    # 从fulltext中找出最高频的30个单词,并从vocabList中去除它们
    top30Words = calcMostFreq(vocabList, fullText)
    for (word, count) in top30Words:
        if word in vocabList:
            vocabList.remove(word)

    trainingSet = range(2 * minLen);
    testSet = []  # 创建训练集、测试集
    for i in range(minLen / 10):  # 随机选取10%的数据,建立测试集
        randIndex = int(random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del (trainingSet[randIndex])
    trainMat = [];
    trainClasses = []
    for docIndex in trainingSet:
        trainMat.append(bayes.bagOfWords2VecMN(vocabList, docList[docIndex]))  # 将训练集中的每一条数据,转化为词向量
        trainClasses.append(classList[docIndex])
    p0V, p1V, pSpam = bayes.trainNB0(np.array(trainMat), np.array(trainClasses))  # 开始训练

    # 用测试数据,测试分类器的准确性
    errorCount = 0
    for docIndex in testSet:
        wordVector = bayes.bagOfWords2VecMN(vocabList, docList[docIndex])
        if bayes.classifyNB(np.array(wordVector), p0V, p1V, pSpam) != classList[docIndex]:
            errorCount += 1
    print 'the error rate is: ', float(errorCount) / len(testSet)
    return vocabList, p0V, p1V
Ejemplo n.º 29
0
def spamTest():
    """
    将文件夹spam和ham中分别的25篇右键导入解析为词列表,再构建一个测试集与训练集,
    50篇中再随机选10篇作为测试集,其余20篇作为测试集(留存交叉验证)
    :return: 
    """
    docList = []
    classList = []
    fullText = []
    for i in range(1, 26):
        wordList = bayes.textParse(open('email/spam/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = bayes.textParse(open('email/ham/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = bayes.createVocabList(docList)
    trainingSet = list(range(50))
    testSet = []
    for i in range(10):  #随机选出10篇
        randIndex = int(random.uniform(
            0,
            len(trainingSet)))  #random.uniform(x, y) 方法将随机生成一个实数,它在 [x,y] 范围内。
        testSet.append(trainingSet[randIndex])
        del (trainingSet[randIndex])
    trainMat = []
    trainClasses = []
    for docIndex in trainingSet:  #遍历训练集中所有的文档
        trainMat.append(bayes.bagOfWords2VecMN(vocabList,
                                               docList[docIndex]))  #构建词向量
        trainClasses.append(classList[docIndex])
    p0V, p1V, pSpam = bayes.trainNB0(array(trainMat),
                                     array(trainClasses))  #计算分类所需的概率
    errorCount = 0
    for docIndex in testSet:  #遍历测试集
        wordVector = bayes.setOfWords2Vec(vocabList, docList[docIndex])
        if bayes.classifyNB(array(wordVector), p0V, p1V,
                            pSpam) != classList[docIndex]:
            errorCount += 1
    print('the error rate is :', float(errorCount) / len(testSet))
    return vocabList, p0V, p1V
Ejemplo n.º 30
0
def spamTest():
    docList=[]; classList = []; fullText =[]
    for i in range(1,26):
        str=open('email/spam/%d.txt' % i).read()
        print "str"
        print str
        wordList = bayes.textParse(str)
        print "wordlist"
        print wordList
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = bayes.textParse(open('email/ham/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    print "doclist"
    print len(docList)
    print docList
    print "fulllist"
    print len(fullText)
    print fullText
    print classList

    vocabList = bayes.createVocabList(docList)#create vocabulary
    trainingSet = range(50); testSet=[]           #create test set
    for i in range(10):
        randIndex = int(random.uniform(0,len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex])
    trainMat=[]; trainClasses = []
    for docIndex in trainingSet:#train the classifier (get probs) trainNB0
        trainMat.append(bayes.bagOfWords2VecMN(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V,p1V,pSpam = bayes.trainNB0(array(trainMat),array(trainClasses))
    errorCount = 0
    for docIndex in testSet:        #classify the remaining items
        wordVector = bayes.bagOfWords2VecMN(vocabList, docList[docIndex])
        if bayes.classifyNB(array(wordVector),p0V,p1V,pSpam) != classList[docIndex]:
            errorCount += 1
            print "classification error",docList[docIndex]
    print 'the error rate is: ',float(errorCount)/len(testSet)
Ejemplo n.º 31
0
def spamTest():
    docList = []
    classList = []
    fullText = []

    # parse text from email
    for i in range(1, 26):
        wordList = textParse(open('email/spam/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        #parse text
        wordList = textParse(open('email/ham/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = bayes.createVocabList(docList)

    #build training set and test set
    trainingSet = range(50)
    testSet = []
    for i in range(10):
        randIndex = int(random.uniform(0, len(trainingSet)))
        #select testset and remove the testset from all dataset
        testSet.append(trainingSet[randIndex])
        del (trainingSet[randIndex])
    trainMat = []
    trainClasses = []
    for docIndex in trainingSet:
        trainMat.append(bayes.setOfWords2Vec(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V, p1V, pSpam = bayes.trainNB0(array(trainMat), array(trainClasses))

    #classify and test precision
    errorCount = 0
    for docIndex in testSet:
        wordVector = bayes.setOfWords2Vec(vocabList, docList[docIndex])
        if bayes.classifyNB(array(wordVector), p0V, p1V,
                            pSpam) != classList[docIndex]:
            errorCount += 1
    print 'the error rate is: ', float(errorCount) / len(testSet)
Ejemplo n.º 32
0
def localWords(feed1, feed0):
    docList = []
    classList = []
    fullText = []
    minLen = min(len(feed1['entries']), len(feed0['entries']))

    for i in range(minLen):
        wordList = textParse(feed1['entries'][i]['summary'])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = textParse(feed0['entries'][i]['summary'])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = createVocabList(docList)
    top30Words = calcMostFreq(vocabList, fullText)
    for pairW in top30Words:
        if pairW[0] in vocabList:
            vocabList.remove(pairW[0])

    trainingSet = list(range(2 * minLen))
    testSet = []
    for i in range(20):
        randomIndex = int(random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randomIndex])
        del trainingSet[randomIndex]
    trainMat = []
    trainClasses = []
    for docIndex in trainingSet:
        trainMat.append(bagOfWords2Vec(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V, p1V, pSpam = trainNB0(trainMat, trainClasses)
    errorCount = 0
    for docIndex in testSet:
        wordVector = bagOfWords2Vec(vocabList, docList[docIndex])
        if classifyNB(wordVector, p0V, p1V, pSpam) != classList[docIndex]:
            print(docList[docIndex])
            errorCount += 1
    print('the error rate is: ', float(errorCount) / len(testSet))
    return vocabList, p0V, p1V
Ejemplo n.º 33
0
def localWords(feed1, feed0):
    import feedparser
    docList = []
    classList = []
    fullText = []
    minLen = min(len(feed1['entries']), len(feed0['entries']))
    print feed1['entries']
    print feed0['entries']
    for i in range(minLen):
        wordList = bayes.textParse(feed1['entries'][i]['summary'])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)  #NY is class 1
        wordList = bayes.textParse(feed0['entries'][i]['summary'])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = bayes.createVocabList(docList)  #create vocabulary
    top30Words = calcMostFreq(vocabList, fullText)  #remove top 30 words
    for pairW in top30Words:
        if pairW[0] in vocabList: vocabList.remove(pairW[0])
    trainingSet = list(range(2 * minLen))
    testSet = []  #create test set
    for i in range(10):
        randIndex = int(random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del (trainingSet[randIndex])
    trainMat = []
    trainClasses = []
    for docIndex in trainingSet:  #train the classifier (get probs) trainNB0
        trainMat.append(bayes.bagOfWord2VecMN(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V, p1V, pSpam = bayes.trainNB0(array(trainMat), array(trainClasses))
    errorCount = 0
    for docIndex in testSet:  #classify the remaining items
        wordVector = bayes.bagOfWord2VecMN(vocabList, docList[docIndex])
        if bayes.classifyNB(array(wordVector), p0V, p1V,
                            pSpam) != classList[docIndex]:
            errorCount += 1
    print('the error rate is: ', float(errorCount) / len(testSet))
    return vocabList, p0V, p1V
Ejemplo n.º 34
0
def spamTest():
    docList = []
    classList = []
    fullText = []
    for i in range(1, 26):
        try:
            wordList = textParse(
                open('data/Ch04/email/spam/%d.txt' % i).read())
            docList.append(wordList)
            fullText.extend(wordList)
            classList.append(1)
            wordList = textParse(open('data/Ch04/email/ham/%d.txt' % i).read())
            docList.append(wordList)
            fullText.extend(wordList)
            classList.append(0)
        except Exception as e:
            print(str(e))
            traceback.print_exc()
            print(i)
            exit()
    vocabList = createVocabList(docList)
    trainingSet = list(range(50))
    testSet = []
    for i in range(10):
        randIndex = int(random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del trainingSet[randIndex]
    trainMat = []
    trainClasses = []
    for docIndex in trainingSet:
        trainMat.append(setOfWords2Vec(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V, p1V, pSpam = trainNB0(array(trainMat), array(trainClasses))
    errorCount = 0
    for docIndex in testSet:
        wordVector = setOfWords2Vec(vocabList, docList[docIndex])
        if classifyNB(array(wordVector), p0V, p1V,
                      pSpam) != classList[docIndex]:
            errorCount += 1
            print(docList[docIndex])
    print('the error rate is: ', float(errorCount) / len(testSet))
Ejemplo n.º 35
0
def run():
    print 'begin--->run()'
    postingList, classVec = bayes.loadDataSet()
    myVocabList = bayes.createVocabList(postingList)
    # print myVocabList
    # print bayes.words2Vec(myVocabList,postingList[0])
    # trainMat = []
    # for postinDoc in postingList:
    #     trainMat.append(bayes.words2Vec(myVocabList, postinDoc))
    # p0V, p1V, pAb = bayes.trainNB0(trainMat, classVec)
    # bayes.testingNB()
    # bayes.spamTest()
    # print pAb
    # print p0V
    # print p1V
    import feedparser
    ny = feedparser.parse(
        'https://newyork.craigslist.org/search/res?format=rss')
    sf = feedparser.parse('https://sfbay.craigslist.org/search/apa?format=rss')
    # bayes.localWords(ny,sf)
    bayes.getTopWords(ny, sf)
Ejemplo n.º 36
0
def spamTest():
	docList 	= []
	classList 	= []
	fullText 	= []
	for i in range(1, 26):
		wordList = textParse(open('email/spam/%d.txt' % i).read())
		docList.append(wordList)
		fullText.extend(wordList)
		classList.append(1)

		wordList = textParse(open('email/ham/%d.txt' % i).read())
		docList.append(wordList)
		fullText.extend(wordList)
		classList.append(0)

	vocabList 	= bayes.createVocabList(docList)
	trainingSet = range(50)
	testSet 	= []

	# randomly split data set into 2 sets: test set, and training set
	for i in range(10):
		randIndex = int(random.uniform(0, len(trainingSet)))	# random int 0~len
		testSet.append(trainingSet[randIndex])
		del(trainingSet[randIndex])		# split

	trainMat = [];
	trainClasses = [];
	for docIndex in trainingSet:
		trainMat.append(bayes.setOfWords2Vec(vocabList, docList[docIndex]))
		trainClasses.append(classList[docIndex])

	p0V, p1V, pSpam = bayes.trainNB0(array(trainMat), array(trainClasses))
	errorCount = 0

	for docIndex in testSet:
		wordVector = bayes.setOfWords2Vec(vocabList, docList[docIndex])
		if bayes.classifyNB(array(wordVector), p0V, p1V, pSpam) != classList[docIndex]:
			errorCount += 1
			print "error word: %s" % (docList[docIndex])
	print "error rate is: %f", float(errorCount) / len(testSet)
Ejemplo n.º 37
0
def spamTest():
    """
    对贝叶斯垃圾邮件分类器进行自动化处理
    :return:
    """
    docList = []
    classList = []
    fullText = []
    for i in range(1, 26):
        # 1. 导入并解析文本文件
        wordList = textParse(open('email/spam/%d.txt' % i).read())
        docList.append(wordList)
        fullText.append(wordList)
        classList.append(1)
        wordList = textParse(open('email/ham/%d.txt' % i).read())
        docList.append(wordList)
        fullText.append(wordList)
        classList.append(0)
    vocabList = bayes.createVocabList(docList)
    trainingSet = range(50)
    testSet = []
    for i in range(10):
        # 2. 随机构建训练集
        randIndex = int(random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del (trainingSet[randIndex])
    trainMat = []
    trainClasses = []
    for docIndex in trainingSet:  # train the classifier (get probs) trainNB0
        trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V, p1V, pSpam = bayes.trainNB0(array(trainMat), array(trainClasses))
    errorCount = 0
    # 3. 对测试集分类
    for docIndex in testSet:
        wordVector = bayes.setOfWords2Vec(vocabList, docList[docIndex])
        if bayes.classifyNB(array(wordVector), p0V, p1V,
                            pSpam) != classList[docIndex]:
            errorCount += 1
    print 'the error rate is: ', float(errorCount) / len(testSet)
Ejemplo n.º 38
0
def spamTest():
    docList = []
    classList = []
    fullText = []

    # parse text from email
    for i in range(1,26):
        wordList = textParse(open('email/spam/%d.txt' %i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        #parse text
        wordList = textParse(open('email/ham/%d.txt' %i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = bayes.createVocabList(docList)

    #build training set and test set
    trainingSet = range(50);
    testSet =[]
    for i in range(10):
        randIndex = int(random.uniform(0, len(trainingSet)))
        #select testset and remove the testset from all dataset
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex])
    trainMat = []
    trainClasses = []
    for docIndex in trainingSet:
        trainMat.append(bayes.setOfWords2Vec(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V, p1V, pSpam = bayes.trainNB0(array(trainMat), array(trainClasses))

    #classify and test precision
    errorCount = 0
    for docIndex in testSet:
        wordVector = bayes.setOfWords2Vec(vocabList, docList[docIndex])
        if bayes.classifyNB(array(wordVector), p0V, p1V, pSpam) != classList[docIndex]:
            errorCount += 1
    print 'the error rate is: ', float(errorCount)/len(testSet)
def spamTest():
    docList = []
    classList =[]
    fullText = []

    #导人文件夹spam与ham下的文本文件,并将它们解析为词列表
    for i in range(1,26):
        wordList = textParse(open('email/spam/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = textParse(open('email/ham/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
        
    vocabList = bayes.createVocabList(docList)
    trainingSet = range(50);#本例中共有50封电子邮件,其中的值从0到49
    
    testSet = []    
    '''选择出的数字所对应的文档被添加到测试集, 同时也将其从训练集中剔除。    '''
    for i in range(10):#10封电子邮件被随机选择为测试集。
        randIndex = int(random.uniform(0,len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex])
    trainMatrix=[];
    trainClasses = []
    for docIndex in trainingSet:
        trainMatrix.append(bayes.setOfWords2Vec(vocabList,docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V,p1V,pSpam = bayes.trainNB(array(trainMatrix),array(trainClasses))
    
    errorCount=0
    for docIndex in testSet:
        #如果邮件分类错误,则错误数加1,最后给出总的错误百分比
        wordVector = bayes.setOfWords2Vec(vocabList,docList[docIndex])
        if bayes.classifyNB(array(wordVector),p0V,p1V,pSpam) !=classList[docIndex]:
            errorCount +=1
    print 'the error rate is :',float(errorCount) /len(testSet)
Ejemplo n.º 40
0
def spamTest():
    docList = []
    classList = []
    #fullText = [] #没起作用

    for i in range(1,26): #此案例中样本集名为1.txt~25.txt
        wordList = textParse(open('email/spam/%d.txt' % i).read()) #解析邮件,分隔成一个个词汇
        docList.append(wordList)  #将样本内容存储到docList中
        #fullText.extend(wordList)
        classList.append(1) #spam下对应的类别标签设置为1
        wordList = textParse(open('email/ham/%d.txt' % i).read())
        docList.append(wordList)
        #fullText.extend(wordList)
        classList.append(0) #ham下对应的类别标签设置为0
    vocabList = bayes.createVocabList(docList) #通过docList获取全部的词汇表
    trainingSet = list(range(50)) #此处共50个案例,与classList长度对应
    
    testSet = [] #存储测试样本集
    for i in list(range(10)):
        randIndex = int(random.uniform(0,len(trainingSet))) #随机提取样本作为测试样本
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex]) #把测试样本从训练样本中剔除
    trainMat = []
    trainClasses = []

    for docIndex in trainingSet:#遍历训练样本集
        trainMat.append(bayes.setOfWords2Vec(vocabList, docList[docIndex])) #获取样本中使用词汇情况向量
        trainClasses.append(classList[docIndex])  #获取当前样本的类别标签
    p0V,p1V,pSpam = bayes.trainNB0(array(trainMat), array(trainClasses)) #训练算法,得到概率
    errorCount = 0

    for docIndex in testSet: #遍历测试样本集
        wordVector=bayes.setOfWords2Vec(vocabList, docList[docIndex])
        resultFlag = bayes.classifyNB(array(wordVector), p0V, p1V, pSpam) #使用分类函数进行分类
        if(resultFlag != classList[docIndex]): #如果得到结果不正确,则错误数加上1
            errorCount += 1
    print('the error rate is: ', float(errorCount)/len(testSet))
Ejemplo n.º 41
0
def spamTest():
    docList = []
    classList = []
    fullText = []
    for i in range(1, 26):
        wordList = textParse(open('email/spam/%d.txt' % i, 'r').read())
        docList.append(wordList)
        fullText.append(wordList)
        classList.append(1)
        wordList = textParse(open('email/ham/%d.txt' % i, 'r').read())
        docList.append(wordList)
        fullText.append(wordList)
        classList.append(0)
    vocabList = bayes.createVocabList(docList)
    trainingSet = list(range(50))
    testSet = []  # 创建存储训练集的索引值的列表和测试集的索引值的列表
    for i in range(10):  # 从50个邮件中,随机挑选出40个作为训练集,10个做测试集
        randIndex = int(random.uniform(0, len(
            trainingSet)))  #从一个均匀分布[low,high)中随机采样,注意定义域是左闭右开,即包含low,不包含high.
        testSet.append(trainingSet[randIndex])
        del (trainingSet[randIndex])
    trainMat = []
    trainClasses = []
    for docIndex in trainingSet:
        trainMat.append(bayes.setOfWords2Vec(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V, p1V, pSpam = bayes.trainNBO(np.array(trainMat),
                                     np.array(trainClasses))
    errorCount = 0
    for docIndex in testSet:
        wordVector = bayes.setOfWords2Vec(vocabList, docList[docIndex])
        if bayes.classifyNB(np.array(wordVector), p0V, p1V,
                            pSpam) != classList[docIndex]:
            errorCount += 1
            print('wrong testSet:', docList[docIndex])
    print('wrong rate:%.2f%%' % (float(errorCount) / len(testSet) * 100))
Ejemplo n.º 42
0
def simptestTest():
	listOPosts, listClasses = bayes.loadDataSet()
	myVocabList = bayes.createVocabList(listOPosts)
	print myVocabList
	print listOPosts[0]
	print bayes.setOfWords2Vec(myVocabList, listOPosts[0])
Ejemplo n.º 43
0
import bayes;

listOPosts,listClasses = bayes.loadDataSet()

print listOPosts;
print listClasses;

myVocabList = bayes.createVocabList(listOPosts);

print myVocabList
print bayes.setOfWords2Vec(myVocabList,listOPosts[0])
Ejemplo n.º 44
0
	def testSetOfWords2Vec(self):
		trainSet, classVec = BayesTestCase.loadDataSet()
		vocabList = bayes.createVocabList(trainSet)
		vec = bayes.setOfWords2Vec(vocabList, trainSet[0])
		theVec = [0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1]
		self.assertEqual(theVec, vec)
Ejemplo n.º 45
0
#!/usr/bin/python
#encoding:utf-8
import bayes
from numpy import *
postingList , classList = bayes.loadDataSet()
myVocabList = bayes.createVocabList(postingList)
trainMat = []
for a in postingList:
    trainMat.append( bayes.setOfWords( myVocabList, a ) )
pc, p0, p1 = bayes.trainNB0(trainMat, classList)
test = ['stupid', 'garbage']
thisDoc = array( bayes.setOfWords( myVocabList, test ) )
print bayes.classifyNB(thisDoc, p0, p1, pc)