def plot_history(self, ax=None, yscale=None): """Plot the gain/loss of every point in the order in which they were sampled.""" if not self._examples: raise ValueError("no existing data available to be plotted") iterations = range(1, len(self._examples) + 1) metrics = ((list)(map(_coconut.operator.itemgetter(self._metric), (sorted_examples)(self._examples)))) return plot(iterations, metrics, ax=ax, yscale=yscale, title="History plot for {_coconut_format_0}".format(_coconut_format_0=(self._file_name)), xlabel="Number of trials $n$", ylabel="The {_coconut_format_0} on the $n$th trial".format(_coconut_format_0=(self._metric)))
def plot_convergence(self, ax=None, yscale=None): """Plot the best gain/loss over the history of optimization. Based on skopt.plots.plot_convergence.""" if not self._examples: raise ValueError("no existing data available to be plotted") iterations = range(1, len(self._examples) + 1) best_metrics = ((list)(map(_coconut.operator.itemgetter(self._metric), (running_best)((sorted_examples)(self._examples))))) return plot(iterations, best_metrics, ax=ax, yscale=yscale, title="Convergence plot for {_coconut_format_0}".format(_coconut_format_0=(self._file_name)), xlabel="Number of trials $n$", ylabel="Best {_coconut_format_0} after $n$ trials".format(_coconut_format_0=(self._metric)))
def plot_partial_dependence_1D(self, i_name, ax=None, yscale=None, **kwargs): """Constructs a 1D partial dependence plot using self.partial_dependence.""" xi, yi = self.partial_dependence(i_name, **kwargs) return plot(xi, yi, ax=ax, yscale=yscale, title="Partial dependence of {_coconut_format_0}".format( _coconut_format_0=(i_name)), xlabel="Values of {_coconut_format_0}".format( _coconut_format_0=(i_name)), ylabel="The loss at each point".format())