Ejemplo n.º 1
0
 def testGenerateAliceStrategiesForOneDichotomicAndOneTernaryInput(self):
     outputsAliceSequence = [2, 3]
     chshPoly = BellPolytope(BellScenario(outputsAliceSequence, [2, 2]))
     strgsAlice = list(chshPoly._strategiesGenerator(outputsAliceSequence))
     expectedStrategies = [{
         0: 0,
         1: 0
     }, {
         0: 0,
         1: 1
     }, {
         0: 0,
         1: 2
     }, {
         0: 1,
         1: 0
     }, {
         0: 1,
         1: 1
     }, {
         0: 1,
         1: 2
     }]
     self.assertTrue(len(strgsAlice), len(expectedStrategies))
     for stg in expectedStrategies:
         self.assertIn(stg, strgsAlice)
Ejemplo n.º 2
0
 def testAliceConstantlyZeroAndBobConstantlyOneIsVertexOfCHSH(self):
     chshPoly = BellPolytope(BellScenario([2, 2], [2, 2]))
     verticesAsLists = [
         behaviour.getProbabilityList()
         for behaviour in chshPoly.getListOfVertices()
     ]
     self.assertIn([0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0],
                   verticesAsLists)
Ejemplo n.º 3
0
    def getGeneratorForVertices(self):
        #local vertices
        yield from BellPolytope.getGeneratorForVertices(self)

        #distributions with nontrivial use of the communication channel
        communicationStrgs = [
            format(i, '0' + str(self._numberOfInputsAlice()) + 'b')
            for i in range(1, 2**(self._numberOfInputsAlice() - 1))
        ]
        strgsAlice = [[
            (stgAlice[i], int(comm[i])) for i in range(0, len(stgAlice))
        ] for stgAlice in self._strategiesGenerator(self.outputsAlice)
                      for comm in communicationStrgs]

        strgsBob = [
            stgBob for stgBob in self._strategiesGenerator(
                reduce(lambda acum, elem: acum + [elem, elem], self.outputsBob,
                       [])) if stgBob[0::2] != stgBob[1::2]
        ]

        yield from ([
            int(a == stgAlice[x][0]) & (b == stgBob[2 * y + stgAlice[x][1]])
            for x in range(self._numberOfInputsAlice())
            for y in range(self._numberOfInputsBob())
            for a in range(self.outputsAlice[x])
            for b in range(self.outputsBob[y])
        ] for stgAlice in strgsAlice for stgBob in strgsBob)
Ejemplo n.º 4
0
 def testExistsStrategyAchievingAlgMaxOfCHSH(self):
     vertices = BellPolytopeWithOneWayCommunication(
         BellPolytope(BellScenario([2, 2], [2, 2]))).getListOfVertices()
     chshFunctional = [
         1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1
     ]
     self.assertEqual(
         max([
             np.dot(vertice.getProbabilityList(), chshFunctional)
             for vertice in vertices
         ]), 4)
Ejemplo n.º 5
0
 def testNumberOfLocalVerticesOfChshIs16(self):
     chshPoly = BellPolytope(BellScenario([2, 2], [2, 2]))
     self.assertEquals(len(chshPoly.getListOfVertices()), 16)
Ejemplo n.º 6
0
 def __init__(self, outputsAlice, outputsBob):
     BellPolytope.__init__(self, outputsAlice, outputsBob)
Ejemplo n.º 7
0
                qubitObservable), aliceObservables))

    bobUnBlochVectors = [[-1, -1, 0], [-1, 1, 0]]
    bobObservables = list(
        map(lambda bloch: createQubitObservable(bloch), bobUnBlochVectors))
    bobEffects = list(
        map(
            lambda qubitObservable: projectorsForQubitObservable(
                qubitObservable), bobObservables))

    psi = createMaxEntState(2)

    dist = computeDistributionFromStateAndEffects(psi, aliceEffects,
                                                  bobEffects)

    vertices = BellPolytope(outputsAlice, outputsBob).getListOfVertices()

    print(In_ConvexHull(vertices, vertices[0]))
#
#     with Model("lo1") as M:
#         M.setSolverParam('logInfeasAna',100)
#         # Create variable 'x' of length 4
#         x = M.variable("x", len(vertices), Domain.greaterThan(0.0))
#
#         # Create constraints
#         constraints=[]
#         for prob in range(len(vertices[0])):
#             constraints.append(M.constraint('p('+str(prob)+')',Expr.dot(x,list(map(lambda ver : ver[prob],vertices))),Domain.equalsTo(dist[prob])))
#
#         constraints.append(M.constraint('norm',Expr.dot(x,np.ones((len(vertices), 1))),Domain.equalsTo(1)))
#
Ejemplo n.º 8
0
 def testNumberOfVerticesOfBellPolytope33Is81(self):
     self.assertEqual(BellPolytope(3, 3).numberOfVertices(), 3**6, '')
Ejemplo n.º 9
0
    psi = 2 / np.sqrt(3) * (qt.tensor(qzero, qzero) -
                            1 / 2 * qt.tensor(plus, plus))

    aliceEffects = [[qzero * qzero.dag(), qone * qone.dag()],
                    [plus * plus.dag(), minus * minus.dag()]]
    bobEffects = [[qzero * qzero.dag(), qone * qone.dag()],
                  [plus * plus.dag(), minus * minus.dag()]]

    bobPostMeasurmentStates = [[
        1 / ((qt.tensor(effect, qt.qeye(2)) * psi * psi.dag()).tr()) *
        (qt.tensor(effect, qt.qeye(2)) * psi).ptrace(1)
        for effect in measurement
    ] for measurement in aliceEffects]
    usdState1 = bobPostMeasurmentStates[0][0]
    usdState2 = bobPostMeasurmentStates[1][1]
    overlap = np.sqrt((usdState1 * usdState2).tr())
    usd = [(qt.qeye(2) - usdState1) / (1 + overlap),
           (qt.qeye(2) - usdState2) / (1 + overlap)]

    #bobEffects.append([usd[0],usd[1],qt.qeye(2)-usd[0]-usd[1]])

    dist = computeDistributionFromStateAndEffects(psi, aliceEffects,
                                                  bobEffects)
    dist = [p.real for p in dist]

    scenario = BellScenario(outputsAlice, outputsBob)
    poly = BellPolytopeWithOneWayCommunication(BellPolytope(scenario))

    print(poly.contains(dist))
Ejemplo n.º 10
0
import numpy as np
from bellpolytope import BellPolytope





if __name__ == '__main__':
    N=4
    K=3
    poly = BellPolytope(N,K)  
    
    vertices=poly.getVertices()
    distributions=np.matrix(vertices)
    NumberOfCoefficients=(N*K)**2
    
    with open('randomfunctionals.txt','w') as f:
        f.write('Random functionals \n')
            
    for j in range (0,10):
        functional=np.random.uniform(-63,1,size=NumberOfCoefficients)
    
        values=np.dot(distributions,np.transpose(functional))
        c=np.amax(values)
    
        BellNormalisedFunctional=functional/c
        with open('randomfunctionals.txt','a') as f:
            np.savetxt(f, BellNormalisedFunctional, fmt='%.2f')
            f.write('\n')        
Ejemplo n.º 11
0
    ratios = [0, 0.464, 0.569, 0.636, 0.683, 0.718]
    outputsAlice = [2 for _ in range(K + 1)]
    outputsBob = [2 for _ in range(K + 1)]

    ratio = ratios[K]
    beta = 1 / (1 + ratio)
    alpha = beta * ratio
    c = [(-1)**k * beta**(k + 1 / 2) /
         np.sqrt(beta**(2 * k + 1) + alpha**(2 * k + 1)) for k in range(K + 1)]

    states = [
        c[k] * qt.basis(2, 0) + np.sqrt(1 - c[k]**2) * qt.basis(2, 1)
        for k in range(K + 1)
    ]

    psi = (1 / np.sqrt(alpha**2 + beta**2)) * (
        alpha * qt.tensor(qt.basis(2, 0), qt.basis(2, 0)) -
        beta * qt.tensor(qt.basis(2, 1), qt.basis(2, 1)))
    aliceEffects = [[state * state.dag(),
                     qt.qeye(2) - state * state.dag()] for state in states]
    bobEffects = aliceEffects

    dist = computeDistributionFromStateAndEffects(psi, aliceEffects,
                                                  bobEffects)
    print(dist)
    print(sum(dist))
    polytope = BellPolytopeWithOneWayCommunication(
        BellPolytope(BellScenario(outputsAlice, outputsBob)))

    if not polytope.contains(dist):
        print('We found a qdist not reproducible with one bit of comm!')
Ejemplo n.º 12
0
    def testSeqStratForOptimalRandIsSimulable(self):
        alice1outputs = [2, 2]
        alice2outputs = [2, 2, 3]
        bobOutputs = [2, 2]
        sequentialScenario = SequentialBellScenario(
            [alice1outputs, alice2outputs], bobOutputs)
        alice1blochVectors = [[0, 0, 1]]
        alice1Observables = list(
            map(lambda bloch: createQubitObservable(bloch),
                alice1blochVectors))
        alice1Krauss = list(
            map(
                lambda qubitObservable: projectorsForQubitObservable(
                    qubitObservable), alice1Observables))

        epsilon = 7 * np.pi / 32
        plus = 1 / np.sqrt(2) * (qt.basis(2, 0) + qt.basis(2, 1))
        minus = 1 / np.sqrt(2) * (qt.basis(2, 0) - qt.basis(2, 1))
        Kplus = np.cos(epsilon) * plus * plus.dag() + np.sin(
            epsilon) * minus * minus.dag()
        Kminus = -np.cos(epsilon) * minus * minus.dag() + np.sin(
            epsilon) * plus * plus.dag()

        alice1Krauss.append([Kplus, Kminus])

        alice2blochVectors = [[0, 0, 1], [1, 0, 0]]
        alice2Observables = list(
            map(lambda bloch: createQubitObservable(bloch),
                alice2blochVectors))
        alice2Effects = list(
            map(
                lambda qubitObservable: projectorsForQubitObservable(
                    qubitObservable), alice2Observables))
        trineAlice2 = [[0, 0, 1],
                       [np.sin(2 * np.pi / 3), 0,
                        np.cos(2 * np.pi / 3)],
                       [np.sin(4 * np.pi / 3), 0,
                        np.cos(4 * np.pi / 3)]]
        paulies = [qt.sigmax(), qt.sigmay(), qt.sigmaz()]
        alice2Effects.append(
            list(
                map(
                    lambda bloch: effectForQubitPovm(
                        1 / 3, sum(
                            [paulies[i] * bloch[i] for i in range(0, 3)])),
                    trineAlice2)))

        mu = np.arctan(np.sin(2 * epsilon))
        bobUnBlochVectors = [[np.sin(mu), 0, np.cos(mu)],
                             [-np.sin(mu), 0, np.cos(mu)]]
        bobObservables = list(
            map(lambda bloch: createQubitObservable(bloch), bobUnBlochVectors))
        bobEffects = list(
            map(
                lambda qubitObservable: projectorsForQubitObservable(
                    qubitObservable), bobObservables))

        psi = createMaxEntState(2)
        rho = psi * psi.dag()
        expectedCorrelations = {}
        for x1, x2, y in product(range(2), range(3), range(2)):
            for a1, a2, b in product(range(alice1outputs[x1]),
                                     range(alice2outputs[x2]),
                                     range(bobOutputs[y])):
                postMeasrmntState = qt.tensor(
                    alice1Krauss[x1][a1], qt.qeye(2)) * rho * (qt.tensor(
                        alice1Krauss[x1][a1], qt.qeye(2))).dag()
                expectedCorrelations[(x1, x2), y, (a1, a2), b] = (
                    qt.tensor(alice2Effects[x2][a2], bobEffects[y][b]) *
                    postMeasrmntState).tr().real

        expectedBehaviour = Behaviour(sequentialScenario, expectedCorrelations)

        scenario = BellScenario([4, 4, 6, 4, 4, 6], [2, 2])
        polytope = BellPolytopeWithOneWayCommunication(BellPolytope(scenario))

        print(polytope.contains(expectedBehaviour.getProbabilityList()))
Ejemplo n.º 13
0
 def testNumberOfVerticesInScenarioWith4BinaryInputsForBobAnd2ForAliceIs1408(
         self):
     vertices = BellPolytopeWithOneWayCommunication(
         BellPolytope(BellScenario([2, 2],
                                   [2, 2, 2, 2]))).getListOfVertices()
     self.assertEqual(len(vertices), 1408)
Ejemplo n.º 14
0
 def testNumberOfVerticesForCHSHIs64(self):
     vertices = BellPolytopeWithOneWayCommunication(
         BellPolytope(BellScenario([2, 2], [2, 2]))).getListOfVertices()
     self.assertEqual(len(vertices), 64)
Ejemplo n.º 15
0
                        np.trace(rho * np.kron(prob.matsolX(a + N * x),
                                               prob.matsolY(b + N * y))))
    return np.dot(np.array(functional), products)


if __name__ == '__main__':
    parties = 2
    N = 3
    K = 4
    outputsAlice = [4, 4, 4]
    outputsBob = [4, 4, 4]
    dim = 2
    BellViolations = []
    #Creo que así los vértices están bien
    scenario = BellScenario(outputsAlice, outputsBob)
    poly = BellPolytope(scenario)
    vertices = poly.getListOfVertices()
    distributions = np.matrix(vertices)
    NumberOfCoefficients = (N * K)**2
    '''with open('results.txt','w') as f:
        f.write('Random functionals \n')'''

    rho = np.matrix([[0, 0, 0, 0], [0, 1 / 2, -1 / 2, 0],
                     [0, -1 / 2, 1 / 2, 0], [0, 0, 0, 0]])
    #Ineqs = np.loadtxt( 'Ineqs.txt')
    '''for i in range (0,2): 
        functional=np.random.uniform(-N**2*(N**2-2),1,size=NumberOfCoefficients)
        values=np.dot(distributions,np.transpose(functional))
        c=np.amax(values)
        if c==0:
            functional=np.random.uniform(-N**2*(N**2-2),1,size=NumberOfCoefficients)
Ejemplo n.º 16
0
from mosek.fusion import *
from bellpolytope import BellPolytope
import numpy as np
from bellscenario import BellScenario
from behaviour import Behaviour
from itertools import product

if __name__ == '__main__':

    n = 2
    outputs = 2**n * [3]
    outputsAlice = outputs
    outputsBob = outputs
    scenario = BellScenario(outputsAlice, outputsBob)
    poly = BellPolytope(scenario)

    toBin = lambda x: format(x, '0' + str(n) + 'b')
    disjointness = lambda x, y: np.intersect1d(x, y).size == 0

    probabilities = {(x, y, a, b): 1 / 2 * int(
        (a != 2 and b != 2 and
         (a + b) % 2 == disjointness(toBin(x), toBin(y))))
                     for (x, y, a, b) in scenario.getTuplesOfEvents()}
    dist = Behaviour(scenario, probabilities).getProbabilityList()

    with Model("lo1") as M:

        fullSpaceDimension = sum(
            [sum([a * b for b in outputsBob]) for a in outputsAlice])
        bellFunctional = M.variable("bellFunctional", fullSpaceDimension)
Ejemplo n.º 17
0
 def __init__(self, sequentialBellScenario):
     BellPolytope.__init__(self, sequentialBellScenario)
Ejemplo n.º 18
0
                                          newCoeffForInputs)

    return ineffResistInequality


i = 0
s = 0
parties = 2
InputsAlice = 4
InputsBob = 4
OutputsAlice = 2
OutputsBob = 2
NumberOfInequalities = 174

functionals = np.loadtxt('dataconverted.txt')
poly = BellPolytope(InputsAlice, OutputsAlice)
InefficiencyResistantInequalities = np.zeros(
    (NumberOfInequalities,
     InputsAlice * (OutputsAlice + 1) * InputsBob * (OutputsBob + 1)))
text = open("IneffFunctionals4433LispCG.txt", 'w')
lisp = LispHelper
for j in range(0, NumberOfInequalities):
    NormalisedFunctional = np.zeros(InputsAlice * (OutputsAlice + 1) *
                                    InputsBob * (OutputsBob + 1))
    vertices4422 = np.matrix(poly.getVertices())
    values4422 = np.dot(vertices4422, np.transpose(functionals[j][:]))
    minimum = np.amin(values4422)
    if minimum < -1:  #JUST THE INEQUALITIES WE WANT
        InefficiencyResistantInequalities[
            j][:] = extendInequalityToDetecLoopholeSetting(
                functionals[j][:], InputsAlice, OutputsAlice, parties)
Ejemplo n.º 19
0
import numpy as np
from bellpolytope import BellPolytope
  

def Alg(functional[i][j],j,H[j-1]):
    
    return H.tolist()


if __name__ == '__main__':

    N=3
    K=2
    poly = BellPolytope(N,K)    

    ineffResistInequalities = poly.getInefficiencyResistantInequalities()
    vertices33 = BellPolytope(N,K+1).getVertices();

    relevantIneqs = list(filter(lambda ineq : min(
        map(lambda vertex : np.dot(ineq[1:],vertex),vertices33))<-1,
        ineffResistInequalities))
   
    numberOfCoefficients=N**2*(K+1)**2
    Ineq=np.zeros((len(relevantIneqs),numberOfCoefficients))
    
    for i in range (0,len(relevantIneqs)):
        for j in range (0,numberOfCoefficients):
            Ineq[i][j]=relevantIneqs[i][1+j]
    functional=np.zeros((len(relevantIneqs),numberOfCoefficients))
    functional[i]=Ineq[i][:]
    
Ejemplo n.º 20
0
'''
In this example we compute symmetric facets of the Bell local polytope
in the {3,3,4,4} scenario.

@authors: rravell,gsenno
'''

import numpy as np
import cdd
from bellscenario import BellScenario
from bellpolytope import BellPolytope


if __name__ == '__main__':

    outputsAlice = [4,4,4]
    outputsBob = [4,4,4]
    scenario=BellScenario(outputsAlice,outputsBob)
    polytope=BellPolytope(scenario)
    
    symmetricVertices=polytope.getListOfVerticesOfSymmetricSubpolytope()
    VRepresentation=[]
    for vertex in symmetricVertices:
        VRepresentation.append([0]+vertex.getProbabilityList())
    
    mat = cdd.Matrix(VRepresentation, number_type='fraction')
    mat.rep_type = cdd.RepType.GENERATOR
    poly=cdd.Polyhedron(mat)
    print(poly.get_inequalities())