Ejemplo n.º 1
0
 def test_hdfstore_timeseries_manager_exception(self, tmpdir):
     """Check hdfstore exceptions are not ignored"""
     mgr = HDFStoreTimeseriesMgr(str(tmpdir))
     with pytest.raises(AttributeError):
         mgr.set('test', 'df', 'dummy Timeseries')
     # Check lock was released
     assert not HDF_LOCK.locked()
Ejemplo n.º 2
0
    def test_hdfstore_timeseries_manager_quality_defaults_to_1(self, tmpdir):
        """Check quality read as NaN in DB is changed into 1

        This is a patch for data registered before the default was introduced.
        """
        t_start = dt.datetime(2017, 1, 1)
        t_end = dt.datetime(2017, 1, 2)
        index = pd.date_range(t_start, t_end, freq='H', closed='left')
        data = np.random.rand(len(index))
        quality = np.random.rand(len(index))
        mgr = HDFStoreTimeseriesMgr(str(tmpdir))

        # Test with real values and NaN
        quality[::2] = [np.NaN] * len(quality[::2])
        ts = Timeseries(index=index,
                        data=data,
                        quality=quality,
                        update_ts=index)
        mgr.set('test', '/df', ts)
        df = mgr.get('test', '/df').dataframe
        assert (df.quality[::2] == 1).all()

        # Test with only NaN
        quality = [np.NaN] * len(quality)
        ts = Timeseries(index=index,
                        data=data,
                        quality=quality,
                        update_ts=index)
        mgr.set('test', '/df', ts)
        df = mgr.get('test', '/df').dataframe
        assert (df.quality == 1).all()
Ejemplo n.º 3
0
    def test_hdfstore_timeseries_manager_get_bounds(self, tmpdir):
        """Test get optional time bounds"""
        t_start = dt.datetime(2017, 1, 1)
        t_end = dt.datetime(2017, 1, 2)
        index = pd.date_range(t_start, t_end, freq='min', closed='left')

        mgr = HDFStoreTimeseriesMgr(str(tmpdir))
        ts = Timeseries(index=index, data=np.random.rand(len(index)))
        mgr.set('test', '/df', ts)
        df = ts.dataframe

        new_df = mgr.get('test', '/df', t_start=t_start, t_end=t_end).dataframe
        assert new_df['data'].equals(df['data'])
        assert new_df.index.equals(df.index)

        new_df = mgr.get('test', '/df').dataframe
        assert new_df['data'].equals(df['data'])
        assert new_df.index.equals(df.index)

        new_df = mgr.get('test', '/df', t_start=t_start).dataframe
        assert new_df['data'].equals(df['data'])
        assert new_df.index.equals(df.index)

        new_df = mgr.get('test', '/df', t_end=t_end).dataframe
        assert new_df['data'].equals(df['data'])
        assert new_df.index.equals(df.index)
Ejemplo n.º 4
0
    def test_hdfstore_timeseries_manager_persistance(self, tmpdir):
        """Ensure data is persistance accross manager instances"""

        t_start = dt.datetime(2017, 1, 1)
        t_end = dt.datetime(2017, 1, 2)
        index = pd.date_range(t_start, t_end, freq='min', closed='left')

        ts = Timeseries(index=index,
                        data=np.random.rand(len(index)),
                        quality=np.random.rand(len(index)),
                        update_ts=index)

        mgr = HDFStoreTimeseriesMgr(str(tmpdir))
        # Store new dataframe
        mgr.set('test', '/df', ts)
        df = mgr.get('test', '/df', t_start=t_start, t_end=t_end).dataframe
        assert len(df) == 60 * 24
        del mgr

        mgr = HDFStoreTimeseriesMgr(str(tmpdir))
        df = mgr.get('test', '/df', t_start=t_start, t_end=t_end).dataframe
        assert len(df) == 60 * 24
Ejemplo n.º 5
0
    def test_hdfstore_timeseries_manager_datetime_awareness(self, tmpdir):
        """Check behavior with regard to datetime awareness"""

        # To test for awareness, see https://stackoverflow.com/a/27596917

        def isaware(ts):
            return (ts.tzinfo is not None
                    and ts.tzinfo.utcoffset(ts) is not None)

        def isnaive(ts):
            return ts.tzinfo is None or ts.tzinfo.utcoffset(ts) is None

        t1_n = dt.datetime(2017, 1, 1)
        t2_n = dt.datetime(2017, 1, 2)
        t2_a = dt.datetime(2017, 1, 2).replace(tzinfo=pytz.UTC)
        t3_a = dt.datetime(2017, 1, 3).replace(tzinfo=pytz.UTC)
        index_n = pd.date_range(t1_n, t2_n, freq='min', closed='left')
        index_a = pd.date_range(t2_a, t3_a, freq='min', closed='left')

        ts_n = Timeseries(index=index_n,
                          data=np.random.rand(len(index_n)),
                          update_ts=index_n)
        ts_a = Timeseries(index=index_a,
                          data=np.random.rand(len(index_a)),
                          update_ts=index_a)

        mgr = HDFStoreTimeseriesMgr(str(tmpdir))

        # Naive index dataframe
        mgr.set('test', '/df_n', ts_n)
        df = mgr.get('test', '/df_n', t_start=t1_n, t_end=t2_n).dataframe
        ts_0 = df.index[0]
        assert isnaive(ts_0)

        # Aware index dataframe (TZ = UTC)
        mgr.set('test', '/df_a', ts_a)
        df = mgr.get('test', '/df_a', t_start=t2_a, t_end=t3_a).dataframe
        ts_0 = df.index[0]
        assert isaware(ts_0)

        # Mix both -> every index is considered UTC
        mgr.set('test', '/df_m', ts_n)
        mgr.set('test', '/df_m', ts_a)
        df = mgr.get('test', '/df_m', t_start=t1_n, t_end=t3_a).dataframe
        ts_0 = df.index[0]
        ts_1 = df.index[-1]
        assert isaware(ts_0)
        assert isaware(ts_1)
Ejemplo n.º 6
0
    def test_hdfstore_timeseries_manager_sorted(self, tmpdir):
        """Check hdfstore returns a sorted index dataframe"""
        t_start1 = dt.datetime(2017, 1, 1)
        t_end1 = dt.datetime(2017, 1, 6)
        index1 = pd.date_range(t_start1, t_end1, freq='D', closed='left')
        t_start2 = dt.datetime(2017, 1, 3)
        t_end2 = dt.datetime(2017, 1, 5)
        index2 = pd.date_range(t_start2, t_end2, freq='D', closed='left')
        df1 = pd.DataFrame({'data': range(len(index1))}, index=index1)
        df2 = pd.DataFrame({'data': range(len(index2))}, index=index2)

        mgr = HDFStoreTimeseriesMgr(str(tmpdir))
        mgr.set('test', 'df', Timeseries.from_dataframe(df1))
        mgr.set('test', 'df', Timeseries.from_dataframe(df2))
        ts_out = mgr.get('test', 'df', t_start=t_start1, t_end=t_end1)
        assert ts_out.dataframe.index.equals(index1)
Ejemplo n.º 7
0
def get_timeseries_manager():
    """Return timeseries manager according to application configuration"""

    app_config = current_app.config

    # Instantiate timeseries manager
    backend = app_config.get('TIMESERIES_BACKEND')
    if backend == 'hdfstore':
        try:
            storage_dir = app_config['TIMESERIES_BACKEND_STORAGE_DIR']
        except KeyError:
            raise TimeseriesConfigError(
                "Missing hdfstore storage directory in configuration")
        timeseries_mgr = HDFStoreTimeseriesMgr(storage_dir)
    else:
        raise TimeseriesConfigError(
            "Invalid timeseries backend: {}".format(backend))

    return timeseries_mgr
Ejemplo n.º 8
0
    def test_hdfstore_timeseries_manager(self, tmpdir):

        t_before_start_1 = dt.datetime(2016, 12, 1)
        t_before_start_2 = dt.datetime(2016, 12, 2)
        t_start = dt.datetime(2017, 1, 1)
        t_inside_1 = dt.datetime(2017, 1, 1, 8, 12, 42)
        t_inside_2 = dt.datetime(2017, 1, 1, 16, 42, 12)
        t_end = dt.datetime(2017, 1, 2)
        t_after_end_1 = dt.datetime(2017, 2, 1)
        t_after_end_2 = dt.datetime(2017, 2, 2)
        index = pd.date_range(t_start, t_end, freq='min', closed='left')

        mgr = HDFStoreTimeseriesMgr(str(tmpdir))

        # Get unknown timestore ID
        df = mgr.get('test', 'dummy', t_start=t_start, t_end=t_end).dataframe
        assert df.empty

        # Set unexisting ID: no problem
        ts = Timeseries(index=index,
                        data=np.random.rand(len(index)),
                        quality=np.random.rand(len(index)),
                        update_ts=index)
        mgr.set('test', '/df', ts)
        df = ts.dataframe

        # Query new dataframe
        new_df = mgr.get('test', '/df', t_start=t_start, t_end=t_end).dataframe
        assert new_df['data'].equals(df['data'])
        assert new_df.index.equals(df.index)

        # Query new dataframe out of bounds
        new_df = mgr.get('test',
                         '/df',
                         t_start=t_before_start_1,
                         t_end=t_before_start_2).dataframe
        assert new_df.empty
        new_df = mgr.get('test',
                         '/df',
                         t_start=t_after_end_1,
                         t_end=t_after_end_2).dataframe
        assert new_df.empty

        # Query sub-timerange
        new_df = mgr.get('test', '/df', t_start=t_inside_1,
                         t_end=t_inside_2).dataframe
        assert len(new_df) == 510

        # Query straddling a bound
        new_df = mgr.get('test',
                         '/df',
                         t_start=t_before_start_2,
                         t_end=t_inside_1).dataframe
        assert len(new_df) == 493

        # Override some values
        ts = Timeseries(index=index[:5],
                        data=np.arange(5, dtype='float'),
                        quality=np.random.rand(5),
                        update_ts=index[:5])
        mgr.set('test', '/df', ts)
        new_df = mgr.get('test', '/df', t_start=t_start, t_end=t_end).dataframe
        assert len(new_df) == 1440
        new_df = mgr.get('test', '/df', t_start=index[0],
                         t_end=index[5]).dataframe
        assert new_df['data'].tolist() == [float(x) for x in range(5)]

        # Delete values
        mgr.delete('test', '/df', index[5], index[10])
        new_df = mgr.get('test', '/df', t_start=t_start, t_end=t_end).dataframe
        assert len(new_df) == 1435
        new_df = mgr.get('test', '/df', t_start=index[0],
                         t_end=index[10]).dataframe
        assert new_df['data'].tolist() == [float(x) for x in range(5)]