Ejemplo n.º 1
0
def ppm_group_algo_contour_plot_helper(test_name, fnames, algos,
                                       granularity=config.PPM_CONTOUR_GRANULARITY,
                                       alpha_start=config.PPM_ALPHA_START, alpha_end=config.PPM_ALPHA_END,
                                       beta_start=config.PPM_BETA_START, beta_end=config.PPM_BETA_END):
  if type(fnames) == str:
    fnames = [fnames]
  alpha_range = (float(alpha_start), float(alpha_end))
  beta_range = (float(beta_start), float(beta_end))
  granularity = int(granularity)
  algos = algos.split(",")
  kwargs = contour_settings(config.PPM_GROUP_CONTOUR_DEFAULT_ARGS,
                            config.PPM_GROUP_CONTOUR_OVERRIDES, test_name, fnames)

  fig = plot_contour_base(xlim=beta_range, ylim=alpha_range)
  colors = kwargs['colormap'](np.linspace(0, 1, len(algos)))
  del kwargs['colormap']
  for algo, color in zip(algos, colors):
    prior, depth = algo.split("/")
    depth = int(depth)
    optimum, evals = benchmark.tasks.contour_data(prior, paranoia, depth,
                                                  alpha_range, beta_range, granularity, fnames)
    label = short_name(config.SHORT_PRIOR_NAME, prior)
    plot_optimum(optimum, label=label, color=color)
    plot_contour_lines(optimum, evals, colors=color, **kwargs)

  return plot.save_figure(fig, general.sanitize_fname(test_name), fnames)
Ejemplo n.º 2
0
def save_figure(fig, output_dir, fnames):
  if len(fnames) == 1:
    fig_fname = general.sanitize_fname(fnames[0])
  else:
    m = hashlib.md5()
    for fname in fnames:
      m.update(fname.encode('utf8'))
    fig_fname = "group-" + m.hexdigest()
  fig_fname += "_" + style_name + ".pdf"
  fig_dir = os.path.join(config.FIGURE_DIR, output_dir)
  os.makedirs(fig_dir, exist_ok=True)

  fig_path = os.path.join(fig_dir, fig_fname)
  with PdfPages(fig_path) as out:
    print("Writing figure to " + fig_path)
    out.savefig(fig)
  return fig_path
Ejemplo n.º 3
0
def ppm_optimal_alpha_beta_helper(test_name, fname, prior,
                                  depths=config.PPM_PARAMETER_DEPTHS,
                                  granularity=config.PPM_PARAMETER_GRANULARITY):
  depths = parse_depths(depths)
  granularity = int(granularity)

  csv_dir = os.path.join(config.TABLE_DIR, test_name)
  os.makedirs(csv_dir, exist_ok=True)
  csv_path = os.path.join(csv_dir, general.sanitize_fname(fname) + '.csv')
  with open(csv_path, 'w') as f:
    fieldnames = ['depth', 'alpha', 'beta', 'efficiency', 'status']
    writer = csv.writer(f)
    writer.writerow(fieldnames)

    for d in depths:
      res = benchmark.tasks.ppm_find_optimal_alpha_beta([fname], paranoia, prior, d, granularity,
                                                        config.PPM_ALPHA_RANGE, config.PPM_BETA_RANGE)
      if res: # optimisation succeeded
        (alpha, beta), efficiency, status = res
        writer.writerow([d, alpha, beta, efficiency, status])
    return csv_path