Ejemplo n.º 1
0
  # create legend
  methods = []
  artists = []
  for method in benchmarks.method2format:
    methods.append(method)
    artists.append(
        Line2D((0,0),(0,1),
               **benchmarks.method2format[method]))
  legend()
    

####################
# COMPLEXITY
####################

data = benchmarks.read('complexity.xml')
all_methods = data['methods']
all_cores = data['cores']
all_tolerances = data['tolerances']
all_charges = data['charges']
timing = data['timing']

cores = 1
ixcor = all_cores.index(cores)
tolerance = 1e-3
ixtol = all_tolerances.index(tolerance)

figure('Complexity')
for method in data['methods']:
    time_per_particle = \
      timing[method][:, ixtol, ixcor] / all_charges
Ejemplo n.º 2
0
import benchmarks
import matplotlib.pylab as plt
from matplotlib.image import NonUniformImage
import numpy

tolerance = 1e-3
interpolation='bicubic'
levels = numpy.arange(-4,4)

all_charges, all_tolerances, all_cores, timing, speedup, efficiency = \
  benchmarks.read('3d-periodic/bm_cloud_wall_jugene.xml')

ixtol = all_tolerances.index(tolerance)
charges = numpy.array(all_charges)[::-1]
cores = numpy.array(all_cores)
Z = numpy.log(timing['p2nfft'][:,ixtol,:])

plt.subplot(221)
plt.imshow(Z, origin='lower', interpolation='nearest')
cbar = plt.colorbar(ticks=levels)
cbar.ax.set_yticklabels(10.0**levels)
plt.xticks(numpy.arange(len(cores)), cores)
plt.xlabel('#cores')
plt.yticks(numpy.arange(len(charges)), charges[::-1])
plt.ylabel('#charges')
plt.grid(True)

plt.subplot(223)
plt.contourf(Z, levels=levels, origin='lower', interpolation=interpolation)
cbar = plt.colorbar(ticks=levels)
cbar.ax.set_yticklabels(10.0**levels)
Ejemplo n.º 3
0
import benchmarks
from matplotlib.pylab import *
from numpy import *

testcase = 'cloud_wall_scaling_jugene.xml'

all_charges, all_tolerances, all_cores, timing = benchmarks.read(testcase)


def plot_timing(testcase, charges, tolerance):
    ixcha = all_charges.index(charges)
    ixtol = all_tolerances.index(tolerance)

    methods = timing.keys()
    methods.sort()

    for method in methods:
        data = timing[method]
        if not all(isnan(data[ixcha, ixtol, :])):
            loglog(all_cores,
                   data[ixcha, ixtol, :],
                   label=method,
                   **benchmarks.fmt(method))

            #    legend()
    xlabel('#cores')
    ylabel('Time [s]')


def plot_efficiency(testcase, charges, tolerance):
    ixcha = all_charges.index(charges)
Ejemplo n.º 4
0
def create_legend():
    # create legend
    methods = []
    artists = []
    for method in benchmarks.method2format:
        methods.append(method)
        artists.append(
            Line2D((0, 0), (0, 1), **benchmarks.method2format[method]))
    legend()


####################
# COMPLEXITY
####################

data = benchmarks.read('complexity.xml')
all_methods = data['methods']
all_cores = data['cores']
all_tolerances = data['tolerances']
all_charges = data['charges']
timing = data['timing']

cores = 1
ixcor = all_cores.index(cores)
tolerance = 1e-3
ixtol = all_tolerances.index(tolerance)

figure('Complexity')
for method in data['methods']:
    time_per_particle = \
      timing[method][:, ixtol, ixcor] / all_charges
Ejemplo n.º 5
0
import benchmarks
from matplotlib.pylab import *
from numpy import *

testcase = 'cloud_wall_scaling_jugene.xml'

all_charges, all_tolerances, all_cores, timing = benchmarks.read(testcase)

def plot_timing(testcase, charges, tolerance):
    ixcha = all_charges.index(charges)
    ixtol = all_tolerances.index(tolerance)

    methods = timing.keys()
    methods.sort()

    for method in methods:
      data = timing[method]
      if not all(isnan(data[ixcha,ixtol,:])):
        loglog(all_cores, data[ixcha,ixtol,:], 
                   label=method, **benchmarks.fmt(method))

        #    legend()
    xlabel('#cores')
    ylabel('Time [s]')

def plot_efficiency(testcase, charges, tolerance):
    ixcha = all_charges.index(charges)
    ixtol = all_tolerances.index(tolerance)

    methods = timing.keys()
    methods.sort()
Ejemplo n.º 6
0
    if minimal_time is None:
        print "No data for charges={} tolerance={}".format(charges, tolerance)
        return
            
    for method in methods:
      data = timing[method]
      if not all(isnan(data[ixcha,ixtol,:])):
        semilogx(all_cores, minimal_time/(data[ixcha,ixtol,:]*all_cores), 
                   label=method, **benchmarks.fmt(method))

        #    legend()
    xlim((1, charges/200.))
    xlabel('#cores')
    ylabel('Efficiency')

all_charges, all_tolerances, all_cores, timing = \
    benchmarks.read('silica_melt_scaling_jugene.xml')

sp = 1
for charges in all_charges:
    subplot(2, 3, sp)
    sp += 1
    title('Jugene {} charges'.format(charges))
    plot_efficiency(charges, 1e-3)

subplot(231)
legend()
#tight_layout()
    
show()
Ejemplo n.º 7
0
        print "No data for charges={} tolerance={}".format(charges, tolerance)
        return
            
    for method in methods:
      data = timing[method]
      if not all(isnan(data[ixcha,ixtol,:])):
        semilogx(all_cores, minimal_time/(data[ixcha,ixtol,:]*all_cores), 
                   label=method, **benchmarks.fmt(method))

        #    legend()
    xlim((1, charges/200.))
    xlabel('#cores')
    ylabel('Efficiency')

all_charges, all_tolerances, all_cores, timing = \
    benchmarks.read('silica_melt_scaling_juropa.xml')

sp = 1
for charges in all_charges:
    subplot(2, 3, sp)
    sp += 1
    title('Juropa, {} charges'.format(charges))
    plot_efficiency(charges, 1e-3)

# create legend
methods = []
artists = []
for method in benchmarks.method2format:
    methods.append(method)
    artists.append(
        Line2D((0,0),(0,1),
Ejemplo n.º 8
0
        return

    for method in methods:
        data = timing[method]
        if not all(isnan(data[ixcha, ixtol, :])):
            semilogx(all_cores,
                     minimal_time / (data[ixcha, ixtol, :] * all_cores),
                     label=method,
                     **benchmarks.fmt(method))

            #    legend()
    xlim((1, charges / 200.))
    xlabel('#cores')
    ylabel('Efficiency')

all_charges, all_tolerances, all_cores, timing = \
    benchmarks.read('silica_melt_scaling_jugene.xml')

sp = 1
for charges in all_charges:
    subplot(2, 3, sp)
    sp += 1
    title('Jugene {} charges'.format(charges))
    plot_efficiency(charges, 1e-3)

subplot(231)
legend()
#tight_layout()

show()
Ejemplo n.º 9
0
import benchmarks
import matplotlib.pylab as plt
from matplotlib.image import NonUniformImage
import numpy

tolerance = 1e-3
interpolation = 'bicubic'
levels = numpy.arange(-4, 4)

all_charges, all_tolerances, all_cores, timing, speedup, efficiency = \
  benchmarks.read('3d-periodic/bm_cloud_wall_jugene.xml')

ixtol = all_tolerances.index(tolerance)
charges = numpy.array(all_charges)[::-1]
cores = numpy.array(all_cores)
Z = numpy.log(timing['p2nfft'][:, ixtol, :])

plt.subplot(221)
plt.imshow(Z, origin='lower', interpolation='nearest')
cbar = plt.colorbar(ticks=levels)
cbar.ax.set_yticklabels(10.0**levels)
plt.xticks(numpy.arange(len(cores)), cores)
plt.xlabel('#cores')
plt.yticks(numpy.arange(len(charges)), charges[::-1])
plt.ylabel('#charges')
plt.grid(True)

plt.subplot(223)
plt.contourf(Z, levels=levels, origin='lower', interpolation=interpolation)
cbar = plt.colorbar(ticks=levels)
cbar.ax.set_yticklabels(10.0**levels)
Ejemplo n.º 10
0
import benchmarks
from matplotlib.pylab import *
from numpy import *

testcase = 'cloud_wall_scaling_juropa.xml'

all_charges, all_tolerances, all_cores, timing = \
    benchmarks.read(testcase)

def plot_timing(charges, tolerance):
    ixcha = all_charges.index(charges)
    ixtol = all_tolerances.index(tolerance)

    methods = timing.keys()
    methods.sort()

    for method in methods:
      data = timing[method]
      if not all(isnan(data[ixcha,ixtol,:])):
        plt.loglog(all_cores, data[ixcha,ixtol,:], 
                   label=method, **benchmarks.fmt(method))

    plt.legend()
    plt.xlim((1, charges/200.))
    plt.xlabel('#cores')
    plt.ylabel('Time [s]')

def plot_efficiency(charges, tolerance):
    ixcha = all_charges.index(charges)
    ixtol = all_tolerances.index(tolerance)
Ejemplo n.º 11
0
    for method in methods:
        data = timing[method]
        if not all(isnan(data[ixcha, ixtol, :])):
            semilogx(all_cores,
                     minimal_time / (data[ixcha, ixtol, :] * all_cores),
                     label=method,
                     **benchmarks.fmt(method))

            #    legend()
    xlim((1, charges / 200.))
    xlabel('#cores')
    ylabel('Efficiency')

all_charges, all_tolerances, all_cores, timing = \
    benchmarks.read('silica_melt_scaling_juropa.xml')

sp = 1
for charges in all_charges:
    subplot(2, 3, sp)
    sp += 1
    title('Juropa, {} charges'.format(charges))
    plot_efficiency(charges, 1e-3)

# create legend
methods = []
artists = []
for method in benchmarks.method2format:
    methods.append(method)
    artists.append(Line2D((0, 0), (0, 1), **benchmarks.method2format[method]))