Ejemplo n.º 1
0
def create_tokenizer_from_hub_module(bert_model_hub, do_lower=True):
    """Get the vocab file and casing info from the Hub module."""
    with tf.Graph().as_default():
        bert_module = hub.Module(bert_model_hub)
        tokenization_info = bert_module(signature="tokenization_info",
                                        as_dict=True)
        with tf.compat.v1.Session() as sess:
            vocab_file, do_lower_case = sess.run([
                tokenization_info["vocab_file"],
                tokenization_info["do_lower_case"]
            ])

    return tokenization.FullTokenizer(vocab_file=vocab_file,
                                      do_lower_case=(do_lower_case
                                                     and do_lower))
Ejemplo n.º 2
0
            try:
                del_file(args.output_dir)
            except Exception as e:
                print(e)
                print('pleace remove the files of output dir and data.conf')
                exit(-1)

    # check output dir exists
    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    # 创建ner dataprocessor对象
    processor = processors[args.rc](args.output_dir)
    label_list = processor.get_labels(labels=args.label_list)
    print(len(label_list))

    tokenizer = tokenization.FullTokenizer(
        vocab_file=args.vocab_file, do_lower_case=args.do_lower_case)

    session_config = tf.ConfigProto(
        log_device_placement=False,
        inter_op_parallelism_threads=0,
        intra_op_parallelism_threads=0,
        allow_soft_placement=True)

    if args.do_train and args.do_eval:
        train_and_eval(args=args, processor=processor, tokenizer=tokenizer,
                       bert_config=bert_config, sess_config=session_config, label_list=label_list)
        # if args.filter_adam_var:
        #     adam_filter(os.path.join(args.output_dir, 'model'))

    if args.do_predict:
        predict(args=args, processor=processor, tokenizer=tokenizer,
def main(args):
    """
    主函数
    """
    os.environ['CUDA_VISIBLE_DEVICES'] = args.device_map
    tf.logging.set_verbosity(tf.logging.INFO)

    processors = {"RC": RCProcessor}
    bert_config = modeling.BertConfig.from_json_file(args.bert_config_file)

    if args.max_seq_length > bert_config.max_position_embeddings:
        raise ValueError(
            "Cannot use sequence length %d because the BERT model "
            "was only trained up to sequence length %d" %
            (args.max_seq_length, bert_config.max_position_embeddings))

    # 在re train 的时候,才删除上一轮产出的文件,在predicted 的时候不做clean
    if args.clean and args.do_train:
        if os.path.exists(args.output_dir):

            def del_file(path):
                ls = os.listdir(path)
                for i in ls:
                    c_path = os.path.join(path, i)
                    if os.path.isdir(c_path):
                        del_file(c_path)
                    else:
                        os.remove(c_path)

            try:
                del_file(args.output_dir)
            except Exception as e:
                print(e)
                print('pleace remove the files of output dir and data.conf')
                exit(-1)

    # check output dir exists
    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)

    # 创建ner dataprocessor对象
    processor = processors[args.rc](args.output_dir)

    tokenizer = tokenization.FullTokenizer(vocab_file=args.vocab_file,
                                           do_lower_case=args.do_lower_case)

    session_config = tf.ConfigProto(log_device_placement=False,
                                    inter_op_parallelism_threads=0,
                                    intra_op_parallelism_threads=0,
                                    allow_soft_placement=True)

    # estimator配置,需要研究一下
    run_config = tf.estimator.RunConfig(
        model_dir=args.output_dir,
        save_summary_steps=args.save_summary_steps,
        save_checkpoints_steps=args.save_checkpoints_steps,
        session_config=session_config)

    train_examples = processor.get_train_examples(args.data_dir)
    eval_examples = processor.get_dev_examples(args.data_dir)
    num_train_steps = None
    num_warmup_steps = None

    # 训练与验证
    if args.do_train and args.do_eval:
        # 加载训练数据
        num_train_steps = int(
            len(train_examples) * 1.0 / args.batch_size *
            args.num_train_epochs)
        if num_train_steps < 1:
            raise AttributeError('training data is so small...')
        num_warmup_steps = int(num_train_steps * args.warmup_proportion)

        # 如何将日志信息打印到文件?
        tf.logging.info("***** Running training *****")
        tf.logging.info("  Num examples = %d", len(train_examples))
        tf.logging.info("  Batch size = %d", args.batch_size)
        tf.logging.info("  Num steps = %d", num_train_steps)

        tf.logging.info("***** Running evaluation *****")
        tf.logging.info("  Num examples = %d", len(eval_examples))
        tf.logging.info("  Batch size = %d", args.batch_size)

    label_list = processor.get_labels(labels=args.label_list)
    # 返回的model_dn 是一个函数,其定义了模型,训练,评测方法,并且使用钩子参数,加载了BERT模型的参数进行了自己模型的参数初始化过程
    # tf 新的架构方法,通过定义model_fn 函数,定义模型,然后通过EstimatorAPI进行模型的其他工作,Es就可以控制模型的训练,预测,评估工作等。
    model_fn = model_fn_builder(bert_config=bert_config,
                                num_labels=len(label_list),
                                init_checkpoint=args.init_checkpoint,
                                learning_rate=args.learning_rate,
                                num_train_steps=num_train_steps,
                                num_warmup_steps=num_warmup_steps,
                                args=args)

    params = {'batch_size': args.batch_size}

    estimator = tf.estimator.Estimator(model_fn,
                                       params=params,
                                       config=run_config)

    if args.do_train and args.do_eval:
        # 1. 将数据转化为tf_record 数据
        train_file = os.path.join(args.output_dir, "train.tf_record")
        if not os.path.exists(train_file):
            filed_based_convert_examples_to_features(train_examples,
                                                     label_list,
                                                     args.max_seq_length,
                                                     tokenizer, train_file)

        # 2.读取record 数据,组成batch
        train_input_fn = file_based_input_fn_builder(
            input_file=train_file,
            seq_length=args.max_seq_length,
            is_training=True,
            drop_remainder=True)
        # estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)

        eval_file = os.path.join(args.output_dir, "eval.tf_record")
        if not os.path.exists(eval_file):
            filed_based_convert_examples_to_features(eval_examples, label_list,
                                                     args.max_seq_length,
                                                     tokenizer, eval_file)

        eval_input_fn = file_based_input_fn_builder(
            input_file=eval_file,
            seq_length=args.max_seq_length,
            is_training=False,
            drop_remainder=False)

        # train and eval togither
        # early stop hook
        early_stopping_hook = tf.contrib.estimator.stop_if_no_decrease_hook(
            estimator=estimator,
            metric_name='loss',
            max_steps_without_decrease=num_train_steps,
            eval_dir=None,
            min_steps=0,
            run_every_secs=None,
            run_every_steps=args.save_checkpoints_steps)

        train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn,
                                            max_steps=num_train_steps,
                                            hooks=[early_stopping_hook])
        eval_spec = tf.estimator.EvalSpec(input_fn=eval_input_fn)
        tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)

    # 预测结果
    if args.do_predict:
        predict_examples = processor.get_test_examples(args.data_dir)
        predict_file = os.path.join(args.output_dir, "predict.tf_record")
        filed_based_convert_examples_to_features(predict_examples, label_list,
                                                 args.max_seq_length,
                                                 tokenizer, predict_file)

        tf.logging.info("***** Running prediction*****")
        tf.logging.info("  Num examples = %d", len(predict_examples))
        tf.logging.info("  Batch size = %d", args.batch_size)

        predict_input_fn = file_based_input_fn_builder(
            input_file=predict_file,
            seq_length=args.max_seq_length,
            is_training=False,
            drop_remainder=False)

        result = estimator.predict(input_fn=predict_input_fn)
        output_predict_file = os.path.join(args.output_dir,
                                           "prediction_test.txt")

        def result_to_pair(writer, data_file, result):
            f = open(data_file, 'r')
            for line, prediction in zip(f, result):
                line = line.strip()
                label = label_list[np.argmax(prediction['probabilities'])]
                writer.write(line + '\t' + str(label) + '\n')

        with codecs.open(output_predict_file, 'w', encoding='utf-8') as writer:
            result_to_pair(writer, os.path.join(args.data_dir, 'test.txt'),
                           result)

        # 在predict的时候同时需输出dev集的结果,因为需要后处理,再线上评估
        eval_file = os.path.join(args.output_dir, "eval.tf_record")
        predict_input_fn_d = file_based_input_fn_builder(
            input_file=eval_file,
            seq_length=args.max_seq_length,
            is_training=False,
            drop_remainder=False)
        result_d = estimator.predict(input_fn=predict_input_fn_d)
        output_d_file = os.path.join(args.output_dir, "prediction_dev.txt")
        with codecs.open(output_d_file, 'w', encoding='utf-8') as writer:
            result_to_pair(writer, os.path.join(args.data_dir, 'dev.txt'),
                           result_d)

    # filter model
    if args.filter_adam_var:
        adam_filter(args.output_dir)
Ejemplo n.º 4
0
def main(_):
  tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO)

  processors = {
      "cola": ColaProcessor,
      "mnli": MnliProcessor,
      "mrpc": MrpcProcessor,
      "xnli": XnliProcessor,
  }

  tokenization.validate_case_matches_checkpoint(FLAGS.do_lower_case,
                                                FLAGS.init_checkpoint)

  if not FLAGS.do_train and not FLAGS.do_eval and not FLAGS.do_predict:
    raise ValueError(
        "At least one of `do_train`, `do_eval` or `do_predict' must be True.")

  bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)

  if FLAGS.max_seq_length > bert_config.max_position_embeddings:
    raise ValueError(
        "Cannot use sequence length %d because the BERT model "
        "was only trained up to sequence length %d" %
        (FLAGS.max_seq_length, bert_config.max_position_embeddings))

  tf.compat.v1.gfile.MakeDirs(FLAGS.output_dir)

  task_name = FLAGS.task_name.lower()

  if task_name not in processors:
    raise ValueError("Task not found: %s" % (task_name))

  processor = processors[task_name]()

  label_list = processor.get_labels()

  tokenizer = tokenization.FullTokenizer(
      vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)

  tpu_cluster_resolver = None
  if FLAGS.use_tpu and FLAGS.tpu_name:
    tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
        FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)

  is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
  run_config = tf.contrib.tpu.RunConfig(
      cluster=tpu_cluster_resolver,
      master=FLAGS.master,
      model_dir=FLAGS.output_dir,
      save_checkpoints_steps=FLAGS.save_checkpoints_steps,
      tpu_config=tf.contrib.tpu.TPUConfig(
          iterations_per_loop=FLAGS.iterations_per_loop,
          num_shards=FLAGS.num_tpu_cores,
          per_host_input_for_training=is_per_host))

  train_examples = None
  num_train_steps = None
  num_warmup_steps = None
  if FLAGS.do_train:
    train_examples = processor.get_train_examples(FLAGS.data_dir)
    num_train_steps = int(
        len(train_examples) / FLAGS.train_batch_size * FLAGS.num_train_epochs)
    num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion)

  model_fn = model_fn_builder(
      bert_config=bert_config,
      num_labels=len(label_list),
      init_checkpoint=FLAGS.init_checkpoint,
      learning_rate=FLAGS.learning_rate,
      num_train_steps=num_train_steps,
      num_warmup_steps=num_warmup_steps,
      use_tpu=FLAGS.use_tpu,
      use_one_hot_embeddings=FLAGS.use_tpu)

  # If TPU is not available, this will fall back to normal Estimator on CPU
  # or GPU.
  estimator = tf.contrib.tpu.TPUEstimator(
      use_tpu=FLAGS.use_tpu,
      model_fn=model_fn,
      config=run_config,
      train_batch_size=FLAGS.train_batch_size,
      eval_batch_size=FLAGS.eval_batch_size,
      predict_batch_size=FLAGS.predict_batch_size)

  if FLAGS.do_train:
    train_file = os.path.join(FLAGS.output_dir, "train.tf_record")
    file_based_convert_examples_to_features(
        train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file)
    tf.compat.v1.logging.info("***** Running training *****")
    tf.compat.v1.logging.info("  Num examples = %d", len(train_examples))
    tf.compat.v1.logging.info("  Batch size = %d", FLAGS.train_batch_size)
    tf.compat.v1.logging.info("  Num steps = %d", num_train_steps)
    train_input_fn = file_based_input_fn_builder(
        input_file=train_file,
        seq_length=FLAGS.max_seq_length,
        is_training=True,
        drop_remainder=True)
    estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)

  if FLAGS.do_eval:
    eval_examples = processor.get_dev_examples(FLAGS.data_dir)
    num_actual_eval_examples = len(eval_examples)
    if FLAGS.use_tpu:
      # TPU requires a fixed batch size for all batches, therefore the number
      # of examples must be a multiple of the batch size, or else examples
      # will get dropped. So we pad with fake examples which are ignored
      # later on. These do NOT count towards the metric (all tf.metrics
      # support a per-instance weight, and these get a weight of 0.0).
      while len(eval_examples) % FLAGS.eval_batch_size != 0:
        eval_examples.append(PaddingInputExample())

    eval_file = os.path.join(FLAGS.output_dir, "eval.tf_record")
    file_based_convert_examples_to_features(
        eval_examples, label_list, FLAGS.max_seq_length, tokenizer, eval_file)

    tf.compat.v1.logging.info("***** Running evaluation *****")
    tf.compat.v1.logging.info("  Num examples = %d (%d actual, %d padding)",
                    len(eval_examples), num_actual_eval_examples,
                    len(eval_examples) - num_actual_eval_examples)
    tf.compat.v1.logging.info("  Batch size = %d", FLAGS.eval_batch_size)

    # This tells the estimator to run through the entire set.
    eval_steps = None
    # However, if running eval on the TPU, you will need to specify the
    # number of steps.
    if FLAGS.use_tpu:
      assert len(eval_examples) % FLAGS.eval_batch_size == 0
      eval_steps = int(len(eval_examples) // FLAGS.eval_batch_size)

    eval_drop_remainder = True if FLAGS.use_tpu else False
    eval_input_fn = file_based_input_fn_builder(
        input_file=eval_file,
        seq_length=FLAGS.max_seq_length,
        is_training=False,
        drop_remainder=eval_drop_remainder)

    result = estimator.evaluate(input_fn=eval_input_fn, steps=eval_steps)

    output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
    with tf.compat.v1.gfile.GFile(output_eval_file, "w") as writer:
      tf.compat.v1.logging.info("***** Eval results *****")
      for key in sorted(result.keys()):
        tf.compat.v1.logging.info("  %s = %s", key, str(result[key]))
        writer.write("%s = %s\n" % (key, str(result[key])))

  if FLAGS.do_predict:
    predict_examples = processor.get_test_examples(FLAGS.data_dir)
    num_actual_predict_examples = len(predict_examples)
    if FLAGS.use_tpu:
      # TPU requires a fixed batch size for all batches, therefore the number
      # of examples must be a multiple of the batch size, or else examples
      # will get dropped. So we pad with fake examples which are ignored
      # later on.
      while len(predict_examples) % FLAGS.predict_batch_size != 0:
        predict_examples.append(PaddingInputExample())

    predict_file = os.path.join(FLAGS.output_dir, "predict.tf_record")
    file_based_convert_examples_to_features(predict_examples, label_list,
                                            FLAGS.max_seq_length, tokenizer,
                                            predict_file)

    tf.compat.v1.logging.info("***** Running prediction*****")
    tf.compat.v1.logging.info("  Num examples = %d (%d actual, %d padding)",
                    len(predict_examples), num_actual_predict_examples,
                    len(predict_examples) - num_actual_predict_examples)
    tf.compat.v1.logging.info("  Batch size = %d", FLAGS.predict_batch_size)

    predict_drop_remainder = True if FLAGS.use_tpu else False
    predict_input_fn = file_based_input_fn_builder(
        input_file=predict_file,
        seq_length=FLAGS.max_seq_length,
        is_training=False,
        drop_remainder=predict_drop_remainder)

    result = estimator.predict(input_fn=predict_input_fn)

    output_predict_file = os.path.join(FLAGS.output_dir, "test_results.tsv")
    with tf.compat.v1.gfile.GFile(output_predict_file, "w") as writer:
      num_written_lines = 0
      tf.compat.v1.logging.info("***** Predict results *****")
      for (i, prediction) in enumerate(result):
        probabilities = prediction["probabilities"]
        if i >= num_actual_predict_examples:
          break
        output_line = "\t".join(
            str(class_probability)
            for class_probability in probabilities) + "\n"
        writer.write(output_line)
        num_written_lines += 1
    assert num_written_lines == num_actual_predict_examples
Ejemplo n.º 5
0
def main(args):
    """
    主函数
    """
    os.environ['CUDA_VISIBLE_DEVICES'] = args.device_map
    tf.logging.set_verbosity(tf.logging.INFO)

    processors = {
        "ner": NerProcessor
    }
    bert_config = modeling.BertConfig.from_json_file(args.bert_config_file)

    if args.max_seq_length > bert_config.max_position_embeddings:
        raise ValueError(
            "Cannot use sequence length %d because the BERT model "
            "was only trained up to sequence length %d" %
            (args.max_seq_length, bert_config.max_position_embeddings))

    # 在re train 的时候,才删除上一轮产出的文件,在predicted 的时候不做clean
    if args.clean and args.do_train:
        print('hahaha')
        if os.path.exists(args.output_dir):
            def del_file(path):
                ls = os.listdir(path)
                for i in ls:
                    c_path = os.path.join(path, i)
                    if os.path.isdir(c_path):
                        del_file(c_path)
                    else:
                        os.remove(c_path)

            try:
                del_file(args.output_dir)
            except Exception as e:
                print(e)
                print('pleace remove the files of output dir and data.conf')
                exit(-1)

    # check output dir exists
    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)

    # 创建ner dataprocessor对象
    processor = processors[args.ner](args.output_dir)

    tokenizer = tokenization.FullTokenizer(
        vocab_file=args.vocab_file, do_lower_case=args.do_lower_case)

    session_config = tf.ConfigProto(
        log_device_placement=False,
        inter_op_parallelism_threads=0,
        intra_op_parallelism_threads=0,
        allow_soft_placement=True)

    # estimator配置,需要研究一下
    run_config = tf.estimator.RunConfig(
        model_dir=args.output_dir,
        save_summary_steps=500,
        save_checkpoints_steps=500,
        session_config=session_config
    )

    train_examples = processor.get_train_examples(args.data_dir)
    eval_examples = processor.get_dev_examples(args.data_dir)
    num_train_steps = None
    num_warmup_steps = None

    # 训练与验证
    if args.do_train and args.do_eval:
        # 加载训练数据
        num_train_steps = int(
            len(train_examples) * 1.0 / args.batch_size * args.num_train_epochs)
        if num_train_steps < 1:
            raise AttributeError('training data is so small...')
        num_warmup_steps = int(num_train_steps * args.warmup_proportion)

        # 如何将日志信息打印到文件?
        tf.logging.info("***** Running training *****")
        tf.logging.info("  Num examples = %d", len(train_examples))
        tf.logging.info("  Batch size = %d", args.batch_size)
        tf.logging.info("  Num steps = %d", num_train_steps)

        tf.logging.info("***** Running evaluation *****")
        tf.logging.info("  Num examples = %d", len(eval_examples))
        tf.logging.info("  Batch size = %d", args.batch_size)

    label_list = processor.get_labels()
    # 返回的model_dn 是一个函数,其定义了模型,训练,评测方法,并且使用钩子参数,加载了BERT模型的参数进行了自己模型的参数初始化过程
    # tf 新的架构方法,通过定义model_fn 函数,定义模型,然后通过EstimatorAPI进行模型的其他工作,Es就可以控制模型的训练,预测,评估工作等。
    model_fn = model_fn_builder(
        bert_config=bert_config,
        num_labels=len(label_list) + 1,
        init_checkpoint=args.init_checkpoint,
        learning_rate=args.learning_rate,
        num_train_steps=num_train_steps,
        num_warmup_steps=num_warmup_steps,
        args=args)  # 这个numlabels为什么要加1,要研究一下

    params = {
        'batch_size': args.batch_size
    }

    estimator = tf.estimator.Estimator(
        model_fn,
        params=params,
        config=run_config)

    if args.do_train and args.do_eval:
        # 1. 将数据转化为tf_record 数据
        train_file = os.path.join(args.output_dir, "train.tf_record")
        if not os.path.exists(train_file):
            filed_based_convert_examples_to_features(
                train_examples, label_list, args.max_seq_length, tokenizer, train_file, args.output_dir)

        # 2.读取record 数据,组成batch
        train_input_fn = file_based_input_fn_builder(
            input_file=train_file,
            seq_length=args.max_seq_length,
            is_training=True,
            drop_remainder=True)
        # estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)

        eval_file = os.path.join(args.output_dir, "eval.tf_record")
        if not os.path.exists(eval_file):
            filed_based_convert_examples_to_features(
                eval_examples, label_list, args.max_seq_length, tokenizer, eval_file, args.output_dir)

        eval_input_fn = file_based_input_fn_builder(
            input_file=eval_file,
            seq_length=args.max_seq_length,
            is_training=False,
            drop_remainder=False)

        # train and eval togither
        # early stop hook
        early_stopping_hook = tf.contrib.estimator.stop_if_no_decrease_hook(
            estimator=estimator,
            metric_name='loss',
            max_steps_without_decrease=1000,
            eval_dir=None,
            min_steps=0,
            run_every_secs=None,
            run_every_steps=args.save_checkpoints_steps)

        train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn, max_steps=num_train_steps,
                                            hooks=[early_stopping_hook])
        eval_spec = tf.estimator.EvalSpec(input_fn=eval_input_fn)
        tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)

    # 预测结果
    if args.do_predict:
        token_path = os.path.join(args.output_dir, "token_test.txt")
        if os.path.exists(token_path):
            os.remove(token_path)

        with codecs.open(os.path.join(args.output_dir, 'label2id.pkl'), 'rb') as rf:
            label2id = pickle.load(rf)
            id2label = {value: key for key, value in label2id.items()}

        predict_examples = processor.get_test_examples(args.data_dir)
        predict_file = os.path.join(args.output_dir, "predict.tf_record")
        filed_based_convert_examples_to_features(predict_examples, label_list,
                                                 args.max_seq_length, tokenizer,
                                                 predict_file, args.output_dir, mode="test")

        tf.logging.info("***** Running prediction*****")
        tf.logging.info("  Num examples = %d", len(predict_examples))
        tf.logging.info("  Batch size = %d", args.batch_size)

        predict_input_fn = file_based_input_fn_builder(
            input_file=predict_file,
            seq_length=args.max_seq_length,
            is_training=False,
            drop_remainder=False)

        result = estimator.predict(input_fn=predict_input_fn)
        output_predict_file = os.path.join(args.output_dir, "label_test.txt")

        def result_to_pair(writer, examples, result):
            for predict_line, prediction in zip(examples, result):
                idx = 0
                line = ''
                line_token = str(predict_line.text).split(' ')
                label_token = str(predict_line.label).split(' ')
                len_seq = len(label_token)
                if len(line_token) != len(label_token):
                    tf.logging.info(predict_line.text)
                    tf.logging.info(predict_line.label)
                    break
                for id in prediction:
                    if idx >= len_seq:
                        break
                    if id == 0:
                        continue
                    curr_labels = id2label[id]
                    if curr_labels in ['[CLS]', '[SEP]']:
                        continue
                    try:
                        line += line_token[idx] + ' ' + \
                            label_token[idx] + ' ' + curr_labels + '\n'
                    except Exception as e:
                        tf.logging.info(e)
                        tf.logging.info(predict_line.text)
                        tf.logging.info(predict_line.label)
                        line = ''
                        break
                    idx += 1
                writer.write(line + '\n')

        with codecs.open(output_predict_file, 'w', encoding='utf-8') as writer:
            result_to_pair(writer, predict_examples, result)
        eval_result = conlleval.return_report(output_predict_file)
        print(''.join(eval_result))
        # 写结果到文件中
        with codecs.open(os.path.join(args.output_dir, 'predict_score.txt'), 'a', encoding='utf-8') as fd:
            fd.write(''.join(eval_result))

        # 在predict的时候同时需输出train和dev集的结果,因为需要后一步的生成负样本数据
        train_file = os.path.join(args.output_dir, "train.tf_record")
        eval_file = os.path.join(args.output_dir, "eval.tf_record")
        predict_input_fn_t = file_based_input_fn_builder(
            input_file=train_file,
            seq_length=args.max_seq_length,
            is_training=False,
            drop_remainder=False)
        predict_input_fn_d = file_based_input_fn_builder(
            input_file=eval_file,
            seq_length=args.max_seq_length,
            is_training=False,
            drop_remainder=False)
        result_t = estimator.predict(input_fn=predict_input_fn_t)
        output_t_file = os.path.join(args.output_dir, "label_train.txt")
        result_d = estimator.predict(input_fn=predict_input_fn_d)
        output_d_file = os.path.join(args.output_dir, "label_dev.txt")
        with codecs.open(output_t_file, 'w', encoding='utf-8') as writer:
            result_to_pair(writer, train_examples, result_t)
        with codecs.open(output_d_file, 'w', encoding='utf-8') as writer:
            result_to_pair(writer, eval_examples, result_d)
        eval_result_t = conlleval.return_report(output_t_file)
        print(''.join(eval_result_t))
        eval_result_d = conlleval.return_report(output_d_file)
        print(''.join(eval_result_d))

    # filter model
    if args.filter_adam_var:
        adam_filter(args.output_dir)