Ejemplo n.º 1
0
class MTDNNModel(object):
    def __init__(self, opt, state_dict=None, num_train_step=-1):
        self.config = opt
        self.updates = state_dict[
            'updates'] if state_dict and 'updates' in state_dict else 0
        self.train_loss = AverageMeter()
        self.network = SANBertNetwork(opt)

        # pdb.set_trace()
        if state_dict:
            new_state = set(self.network.state_dict().keys())
            # change to a safer approach
            old_keys = [k for k in state_dict['state'].keys()]
            for k in old_keys:
                if k not in new_state:
                    print('deleting state:', k)
                    del state_dict['state'][k]
            for k, v in list(self.network.state_dict().items()):
                if k not in state_dict['state']:
                    print('adding missing state:', k)
                    state_dict['state'][k] = v
            # pdb.set_trace()
            self.network.load_state_dict(state_dict['state'])
        self.mnetwork = nn.DataParallel(
            self.network) if opt['multi_gpu_on'] else self.network
        self.total_param = sum([
            p.nelement() for p in self.network.parameters() if p.requires_grad
        ])

        no_decay = [
            'bias', 'gamma', 'beta', 'LayerNorm.bias', 'LayerNorm.weight'
        ]
        optimizer_parameters = [{
            'params': [
                p for n, p in self.network.named_parameters()
                if n not in no_decay
            ],
            'weight_decay_rate':
            0.01
        }, {
            'params':
            [p for n, p in self.network.named_parameters() if n in no_decay],
            'weight_decay_rate':
            0.0
        }]
        # note that adamax are modified based on the BERT code
        if opt['optimizer'] == 'sgd':
            self.optimizer = optim.SGD(optimizer_parameters,
                                       opt['learning_rate'],
                                       weight_decay=opt['weight_decay'])

        elif opt['optimizer'] == 'adamax':
            self.optimizer = Adamax(optimizer_parameters,
                                    opt['learning_rate'],
                                    warmup=opt['warmup'],
                                    t_total=num_train_step,
                                    max_grad_norm=opt['grad_clipping'],
                                    schedule=opt['warmup_schedule'])
            if opt.get('have_lr_scheduler', False):
                opt['have_lr_scheduler'] = False
        elif opt['optimizer'] == 'adadelta':
            self.optimizer = optim.Adadelta(optimizer_parameters,
                                            opt['learning_rate'],
                                            rho=0.95)
        elif opt['optimizer'] == 'adam':
            self.optimizer = Adam(optimizer_parameters,
                                  lr=opt['learning_rate'],
                                  warmup=opt['warmup'],
                                  t_total=num_train_step,
                                  max_grad_norm=opt['grad_clipping'],
                                  schedule=opt['warmup_schedule'])
            if opt.get('have_lr_scheduler', False):
                opt['have_lr_scheduler'] = False
        else:
            raise RuntimeError('Unsupported optimizer: %s' % opt['optimizer'])

        if state_dict and 'optimizer' in state_dict:
            self.optimizer.load_state_dict(state_dict['optimizer'])

        if opt.get('have_lr_scheduler', False):
            if opt.get('scheduler_type', 'rop') == 'rop':
                self.scheduler = ReduceLROnPlateau(self.optimizer,
                                                   mode='max',
                                                   factor=opt['lr_gamma'],
                                                   patience=3)
            elif opt.get('scheduler_type', 'rop') == 'exp':
                self.scheduler = ExponentialLR(self.optimizer,
                                               gamma=opt.get('lr_gamma', 0.95))
            else:
                milestones = [
                    int(step)
                    for step in opt.get('multi_step_lr', '10,20,30').split(',')
                ]
                self.scheduler = MultiStepLR(self.optimizer,
                                             milestones=milestones,
                                             gamma=opt.get('lr_gamma'))
        else:
            self.scheduler = None
        self.ema = None
        if opt['ema_opt'] > 0:
            self.ema = EMA(self.config['ema_gamma'], self.network)
        self.para_swapped = False

    def setup_ema(self):
        if self.config['ema_opt']:
            self.ema.setup()

    def update_ema(self):
        if self.config['ema_opt']:
            self.ema.update()

    def eval(self):
        if self.config['ema_opt']:
            self.ema.swap_parameters()
            self.para_swapped = True

    def train(self):
        if self.para_swapped:
            self.ema.swap_parameters()
            self.para_swapped = False

    def update(self, batch_meta, batch_data):
        self.network.train()
        labels = batch_data[batch_meta['label']]
        # print('data size:',batch_data[batch_meta['token_id']].size())
        if batch_meta['pairwise']:
            labels = labels.contiguous().view(-1,
                                              batch_meta['pairwise_size'])[:,
                                                                           0]
        if self.config['cuda']:
            y = Variable(labels.cuda(async=True), requires_grad=False)
        else:
            y = Variable(labels, requires_grad=False)
        task_id = batch_meta['task_id']
        task_type = batch_meta['task_type']
        inputs = batch_data[:batch_meta['input_len']]
        if len(inputs) == 3:
            inputs.append(None)
            inputs.append(None)
        inputs.append(task_id)
        # pdb.set_trace()
        logits = self.mnetwork(*inputs)
        if batch_meta['pairwise']:
            logits = logits.view(-1, batch_meta['pairwise_size'])

        # pdb.set_trace()
        if task_type > 0:
            if self.config['answer_relu']:
                logits = F.relu(logits)
            loss = F.mse_loss(logits.squeeze(1), y)
        else:
            loss = F.cross_entropy(logits, y)

        if self.config['mediqa_pairloss'] is not None and batch_meta[
                'dataset_name'] in mediqa_name_list:
            # print(logits)
            # print(batch_data[batch_meta['rank_label']].size())
            # input('ha')
            logits = logits.squeeze().view(-1, 2)
            # print(batch_data[batch_meta['rank_label']])
            rank_y = batch_data[batch_meta['rank_label']].view(-1, 2)
            # print(rank_y)
            if self.config['mediqa_pairloss'] == 'hinge':
                # print(logits)
                first_logit, second_logit = logits.split(1, dim=1)
                # print(first_logit,second_logit)
                # pdb.set_trace()
                rank_y = (2 * rank_y - 1).to(torch.float32)
                rank_y = rank_y[:, 0]
                pairwise_loss = F.margin_ranking_loss(
                    first_logit.squeeze(1),
                    second_logit.squeeze(1),
                    rank_y,
                    margin=self.config['hinge_lambda'])
            else:
                # pdb.set_trace()
                pairwise_loss = F.cross_entropy(logits, rank_y[:, 1])
            # print('pairwise_loss:',pairwise_loss,'mse loss:',loss)
            loss += pairwise_loss

        self.train_loss.update(loss.item(), logits.size(0))
        self.optimizer.zero_grad()

        loss.backward()
        if self.config['global_grad_clipping'] > 0:
            torch.nn.utils.clip_grad_norm_(self.network.parameters(),
                                           self.config['global_grad_clipping'])
        self.optimizer.step()
        self.updates += 1
        self.update_ema()

    def predict(self, batch_meta, batch_data):
        self.network.eval()
        task_id = batch_meta['task_id']
        task_type = batch_meta['task_type']
        inputs = batch_data[:batch_meta['input_len']]
        if len(inputs) == 3:
            inputs.append(None)
            inputs.append(None)
        inputs.append(task_id)
        score = self.mnetwork(*inputs)
        gold_label = batch_meta['label']
        if batch_meta['pairwise']:
            score = score.contiguous().view(-1, batch_meta['pairwise_size'])
            if task_type < 1:
                score = F.softmax(score, dim=1)
            score = score.data.cpu()
            score = score.numpy()
            predict = np.zeros(score.shape, dtype=int)
            if task_type < 1:
                positive = np.argmax(score, axis=1)
                for idx, pos in enumerate(positive):
                    predict[idx, pos] = 1
            predict = predict.reshape(-1).tolist()
            score = score.reshape(-1).tolist()
            return score, predict, batch_meta['true_label']
        else:
            if task_type < 1:
                score = F.softmax(score, dim=1)
                # pdb.set_trace()
            score = score.data.cpu()
            score = score.numpy()
            if task_type < 1:
                predict = np.argmax(score, axis=1).tolist()
            else:
                predict = np.greater(
                    score,
                    2.0 + self.config['mediqa_score_offset']).astype(int)
                gold_label = np.greater(
                    batch_meta['label'],
                    2.00001 + self.config['mediqa_score_offset']).astype(int)
                predict = predict.reshape(-1).tolist()
                gold_label = gold_label.reshape(-1).tolist()
                # print('predict:',predict,score)

            score = score.reshape(-1).tolist()

        return score, predict, gold_label

    def save(self, filename):
        network_state = dict([(k, v.cpu())
                              for k, v in self.network.state_dict().items()])
        ema_state = dict([
            (k, v.cpu()) for k, v in self.ema.model.state_dict().items()
        ]) if self.ema is not None else dict()
        params = {
            'state': network_state,
            'optimizer': self.optimizer.state_dict(),
            'ema': ema_state,
            'config': self.config,
        }
        torch.save(params, filename)
        logger.info('model saved to {}'.format(filename))

    def cuda(self):
        self.network.cuda()
        if self.config['ema_opt']:
            self.ema.cuda()
Ejemplo n.º 2
0
def main(*_, **kwargs):
    use_cuda = torch.cuda.is_available() and kwargs["device"] >= 0
    device = torch.device("cuda:" +
                          str(kwargs["device"]) if use_cuda else "cpu")

    if use_cuda:
        torch.cuda.set_device(device)

    kwargs["use_cuda"] = use_cuda

    neptune.create_experiment(
        name="bert-span-parser",
        upload_source_files=[],
        params={
            k: str(v) if isinstance(v, bool) else v
            for k, v in kwargs.items()
        },
    )

    logger.info("Settings: {}", json.dumps(kwargs,
                                           indent=2,
                                           ensure_ascii=False))

    # For reproducibility
    os.environ["PYTHONHASHSEED"] = str(kwargs["seed"])
    random.seed(kwargs["seed"])
    np.random.seed(kwargs["seed"])
    torch.manual_seed(kwargs["seed"])
    torch.cuda.manual_seed_all(kwargs["seed"])
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False

    # Prepare and load data
    tokenizer = BertTokenizer.from_pretrained(kwargs["bert_model"],
                                              do_lower_case=False)

    logger.info("Loading data...")

    train_treebank = load_trees(kwargs["train_file"])
    dev_treebank = load_trees(kwargs["dev_file"])
    test_treebank = load_trees(kwargs["test_file"])

    logger.info(
        "Loaded {:,} train, {:,} dev, and {:,} test examples!",
        len(train_treebank),
        len(dev_treebank),
        len(test_treebank),
    )

    logger.info("Preprocessing data...")

    train_parse = [tree.convert() for tree in train_treebank]
    train_sentences = [[(leaf.tag, leaf.word) for leaf in tree.leaves()]
                       for tree in train_parse]
    dev_sentences = [[(leaf.tag, leaf.word) for leaf in tree.leaves()]
                     for tree in dev_treebank]
    test_sentences = [[(leaf.tag, leaf.word) for leaf in tree.leaves()]
                      for tree in test_treebank]

    logger.info("Data preprocessed!")

    logger.info("Preparing data for training...")

    tags = []
    labels = []

    for tree in train_parse:
        nodes = [tree]
        while nodes:
            node = nodes.pop()
            if isinstance(node, InternalParseNode):
                labels.append(node.label)
                nodes.extend(reversed(node.children))
            else:
                tags.append(node.tag)

    tag_encoder = LabelEncoder()
    tag_encoder.fit(tags, reserved_labels=["[PAD]", "[UNK]"])

    label_encoder = LabelEncoder()
    label_encoder.fit(labels, reserved_labels=[()])

    logger.info("Data prepared!")

    # Settings
    num_train_optimization_steps = kwargs["num_epochs"] * (
        (len(train_parse) - 1) // kwargs["batch_size"] + 1)
    kwargs["batch_size"] //= kwargs["gradient_accumulation_steps"]

    logger.info("Creating dataloaders for training...")

    train_dataloader, train_features = create_dataloader(
        sentences=train_sentences,
        batch_size=kwargs["batch_size"],
        tag_encoder=tag_encoder,
        tokenizer=tokenizer,
        is_eval=False,
    )
    dev_dataloader, dev_features = create_dataloader(
        sentences=dev_sentences,
        batch_size=kwargs["batch_size"],
        tag_encoder=tag_encoder,
        tokenizer=tokenizer,
        is_eval=True,
    )
    test_dataloader, test_features = create_dataloader(
        sentences=test_sentences,
        batch_size=kwargs["batch_size"],
        tag_encoder=tag_encoder,
        tokenizer=tokenizer,
        is_eval=True,
    )

    logger.info("Dataloaders created!")

    # Initialize model
    model = ChartParser.from_pretrained(
        kwargs["bert_model"],
        tag_encoder=tag_encoder,
        label_encoder=label_encoder,
        lstm_layers=kwargs["lstm_layers"],
        lstm_dim=kwargs["lstm_dim"],
        tag_embedding_dim=kwargs["tag_embedding_dim"],
        label_hidden_dim=kwargs["label_hidden_dim"],
        dropout_prob=kwargs["dropout_prob"],
    )

    model.to(device)

    # Prepare optimizer
    param_optimizers = list(model.named_parameters())

    if kwargs["freeze_bert"]:
        for p in model.bert.parameters():
            p.requires_grad = False
        param_optimizers = [(n, p) for n, p in param_optimizers
                            if p.requires_grad]

    # Hack to remove pooler, which is not used thus it produce None grad that break apex
    param_optimizers = [n for n in param_optimizers if "pooler" not in n[0]]

    no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"]
    optimizer_grouped_parameters = [
        {
            "params": [
                p for n, p in param_optimizers
                if not any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            0.01,
        },
        {
            "params": [
                p for n, p in param_optimizers
                if any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            0.0,
        },
    ]

    optimizer = BertAdam(
        optimizer_grouped_parameters,
        lr=kwargs["learning_rate"],
        warmup=kwargs["warmup_proportion"],
        t_total=num_train_optimization_steps,
    )

    if kwargs["fp16"]:
        model, optimizer = amp.initialize(model, optimizer, opt_level="O1")

    pretrained_model_file = os.path.join(kwargs["output_dir"], MODEL_FILENAME)

    if kwargs["do_eval"]:
        assert os.path.isfile(
            pretrained_model_file), "Pretrained model file does not exist!"

        logger.info("Loading pretrained model from {}", pretrained_model_file)

        # Load model from file
        params = torch.load(pretrained_model_file, map_location=device)

        model.load_state_dict(params["model"])

        logger.info(
            "Loaded pretrained model (Epoch: {:,}, Fscore: {:.2f})",
            params["epoch"],
            params["fscore"],
        )

        eval_score = eval(
            model=model,
            eval_dataloader=test_dataloader,
            eval_features=test_features,
            eval_trees=test_treebank,
            eval_sentences=test_sentences,
            tag_encoder=tag_encoder,
            device=device,
        )

        neptune.send_metric("test_eval_precision", eval_score.precision())
        neptune.send_metric("test_eval_recall", eval_score.recall())
        neptune.send_metric("test_eval_fscore", eval_score.fscore())

        tqdm.write("Evaluation score: {}".format(str(eval_score)))
    else:
        # Training phase
        global_steps = 0
        start_epoch = 0
        best_dev_fscore = 0

        if kwargs["preload"] or kwargs["resume"]:
            assert os.path.isfile(
                pretrained_model_file), "Pretrained model file does not exist!"

            logger.info("Resuming model from {}", pretrained_model_file)

            # Load model from file
            params = torch.load(pretrained_model_file, map_location=device)

            model.load_state_dict(params["model"])

            if kwargs["resume"]:
                optimizer.load_state_dict(params["optimizer"])

                torch.cuda.set_rng_state_all([
                    state.cpu()
                    for state in params["torch_cuda_random_state_all"]
                ])
                torch.set_rng_state(params["torch_random_state"].cpu())
                np.random.set_state(params["np_random_state"])
                random.setstate(params["random_state"])

                global_steps = params["global_steps"]
                start_epoch = params["epoch"] + 1
                best_dev_fscore = params["fscore"]
        else:
            assert not os.path.isfile(
                pretrained_model_file
            ), "Please remove or move the pretrained model file to another place!"

        for epoch in trange(start_epoch, kwargs["num_epochs"], desc="Epoch"):
            model.train()

            train_loss = 0
            num_train_steps = 0

            for step, (indices, *_) in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                ids, attention_masks, tags, sections, trees, sentences = prepare_batch_input(
                    indices=indices,
                    features=train_features,
                    trees=train_parse,
                    sentences=train_sentences,
                    tag_encoder=tag_encoder,
                    device=device,
                )

                loss = model(
                    ids=ids,
                    attention_masks=attention_masks,
                    tags=tags,
                    sections=sections,
                    sentences=sentences,
                    gold_trees=trees,
                )

                if kwargs["gradient_accumulation_steps"] > 1:
                    loss /= kwargs["gradient_accumulation_steps"]

                if kwargs["fp16"]:
                    with amp.scale_loss(loss, optimizer) as scaled_loss:
                        scaled_loss.backward()
                else:
                    loss.backward()

                train_loss += loss.item()

                num_train_steps += 1

                if (step + 1) % kwargs["gradient_accumulation_steps"] == 0:
                    optimizer.step()
                    optimizer.zero_grad()
                    global_steps += 1

            # Write logs
            neptune.send_metric("train_loss", epoch,
                                train_loss / num_train_steps)
            neptune.send_metric("global_steps", epoch, global_steps)

            tqdm.write(
                "Epoch: {:,} - Train loss: {:.4f} - Global steps: {:,}".format(
                    epoch, train_loss / num_train_steps, global_steps))

            # Evaluate
            eval_score = eval(
                model=model,
                eval_dataloader=dev_dataloader,
                eval_features=dev_features,
                eval_trees=dev_treebank,
                eval_sentences=dev_sentences,
                tag_encoder=tag_encoder,
                device=device,
            )

            neptune.send_metric("eval_precision", epoch,
                                eval_score.precision())
            neptune.send_metric("eval_recall", epoch, eval_score.recall())
            neptune.send_metric("eval_fscore", epoch, eval_score.fscore())

            tqdm.write("Epoch: {:,} - Evaluation score: {}".format(
                epoch, str(eval_score)))

            # Save best model
            if eval_score.fscore() > best_dev_fscore:
                best_dev_fscore = eval_score.fscore()

                tqdm.write("** Saving model...")

                os.makedirs(kwargs["output_dir"], exist_ok=True)

                torch.save(
                    {
                        "epoch":
                        epoch,
                        "global_steps":
                        global_steps,
                        "fscore":
                        best_dev_fscore,
                        "random_state":
                        random.getstate(),
                        "np_random_state":
                        np.random.get_state(),
                        "torch_random_state":
                        torch.get_rng_state(),
                        "torch_cuda_random_state_all":
                        torch.cuda.get_rng_state_all(),
                        "optimizer":
                        optimizer.state_dict(),
                        "model": (model.module if hasattr(model, "module") else
                                  model).state_dict(),
                    },
                    pretrained_model_file,
                )

            tqdm.write(
                "** Best evaluation fscore: {:.2f}".format(best_dev_fscore))