y = random.randint(int(-radii[index][1]) \
                                   ,int(radii[index][1]))


                if (x**2 + y**2)**0.5 >= radii[index][0] and\
                   (x**2 + y**2)**0.5 <= radii[index][1]:
                    instanceCount += 1
                    features.append([x,y])
                    labels.append(label)

        #Silhouette score
        score = sklearn.metrics.silhouette_score(features, labels)

        #Beta Values
        betaV = beta(features,labels)


        #Plotting
        for i in range(len(features)):
            if labels[i] == 0:
                plt.plot(features[i][0],features[i][1],'bo')
            else:
                plt.plot(features[i][0],features[i][1],'ro')

        #Saving
        name = str(datasetNumber)
        plt.savefig('plots/' + name + '.png')
        plt.clf()

        file = open('datasets/'+ name + '.txt','w')
home = os.getcwd()
datasetFolder = os.path.join(home, "datasets")
betaFile = open("betaValues2.txt", "w")

for i in range(600):
    print(i)
    fileName = os.path.join(datasetFolder, str(i) + ".txt")
    file = open(fileName, 'r')
    X = []
    y = []
    classDistribution = [0, 0]
    for i in file:
        i = i.strip("\n")
        i = i.split(",")
        temp = []
        for j in range(len(i)):
            if j == 2:
                y.append(int(i[j]))
                classDistribution[int(i[j])] += 1
            else:
                temp.append(int(i[j]))
        X.append(temp)
    file.close()

    betaValue = beta(X, y, classDistribution)

    for i in betaValue:
        betaFile.write(str(i) + ",")
    betaFile.write("\n")
betaFile.close()