Ejemplo n.º 1
0
def test_others():

    mesh = load_example_mesh("unit_disc")

    vals = np.ones((len(mesh.vertices),)) - np.linalg.norm(mesh.vertices, axis=1)

    G = mesh_calculus.gradient(vals, mesh, rotated=False)
    Gr = mesh_calculus.gradient(vals, mesh, rotated=True)

    D = mesh_calculus.divergence(Gr.T, mesh)
    C = mesh_calculus.curl(Gr.T, mesh)
Ejemplo n.º 2
0
def compare_contour_direction_to_rotated_gradient(mesh, scalars, polyline):
    """ Check inner product between the polyline edges
        the rotated gradient vectors closes to the initial points of those
        edges. These should point to the same direction.
    

    Parameters
    ----------
    mesh : trimesh
        mesh
    scalars : ndarray
        stream function
    polyline : ndarray (N, 3)
        coordinates of points representing a polyline

    """
    from bfieldtools.mesh_calculus import gradient

    edges = polyline[1:] - polyline[:-1]
    g = gradient(scalars, mesh, rotated=True).T
    fc = mesh.vertices[mesh.faces].mean(axis=1)

    norm = np.linalg.norm
    p = polyline
    # Find closest face centers to polyline nodes
    f_inds = np.argmin(norm(p[:, None, :] - fc[None, :, :], axis=-1), axis=1)

    g_poly = g[f_inds]
    assert np.all(np.sum(g_poly[:-1] * edges, axis=1) > 0)
Ejemplo n.º 3
0
    fig = mlab.figure(bgcolor=(1, 1, 1))

    surf = s.plot(False, figure=fig)
    surf.actor.mapper.interpolate_scalars_before_mapping = True
    surf.module_manager.scalar_lut_manager.number_of_colors = 16

    vecs = mlab.pipeline.vector_field(
        *vol_points.T.reshape(3, Nvol, Nvol, Nvol), *Bvol.T.reshape(3, Nvol, Nvol, Nvol)
    )
    vecnorm = mlab.pipeline.extract_vector_norm(vecs)

    seed_points = mesh.vertices[mesh.faces].mean(axis=1) - 0.01 * mesh.face_normals

    seed_vals = c.basis @ c.inductance @ s
    seed_vals_grad = np.linalg.norm(gradient(seed_vals, c.mesh), axis=0)

    seed_vals = abs(seed_vals[mesh.faces].mean(axis=1)) ** 2
    seed_vals[seed_vals_grad > seed_vals_grad.max() / 1.8] = 0

    Npoints = 500
    seed_inds = np.random.choice(
        np.arange(len(seed_vals)), Npoints, False, seed_vals / seed_vals.sum()
    )

    seed_points = seed_points[seed_inds]

    streams = []

    for pi in seed_points:
        streamline = mlab.pipeline.streamline(
Ejemplo n.º 4
0
s = StreamFunction(s, c)

from mayavi import mlab
from mayavi.api import Engine

engine = Engine()
engine.start()

f = mlab.figure(None,
                bgcolor=(1, 1, 1),
                fgcolor=(0.5, 0.5, 0.5),
                size=(800, 700))
s.plot(figure=f, ncolors=256)
c.plot_mesh(representation="wireframe", figure=f)

j = gradient(s.vert, c.mesh, rotated=True)

Len = np.log(np.linalg.norm(j, axis=0))

vectors = mlab.quiver3d(*c.mesh.triangles_center.T,
                        *j,
                        mode="arrow",
                        colormap="Greens",
                        scalars=Len)

# vectors = engine.scenes[0].children[2].children[0].children[0]
vectors.glyph.glyph.scale_mode = "scale_by_scalar"
vectors.glyph.glyph.scale_factor = 0.6
f.scene.z_plus_view()

#
Ejemplo n.º 5
0
# lls = np.linspace(0.01,1.0, 100)
# mm = []
# for ll in lls:
#     u, v, mesh2d = flatten_mesh(mesh, _lambda=ll)
#     d = mesh2d.area_faces / mesh.area_faces
#     mm.append(np.std(d)/np.mean(d))
#     print(np.std(d)/np.mean(d))
# plt.plot(lls, mm)

#%% Plot flattened mesh and area distortion on faces
plot_data_on_faces(mesh2d, mesh2d.area_faces / mesh.area_faces)

#%% Plot gradient of the two coordinate functions and the cosine of the angle between the gradients
from bfieldtools.mesh_calculus import gradient

gx = gradient(u, mesh)
gy = gradient(v, mesh)
cos = np.sum(gx * gy, axis=0) / (np.linalg.norm(gx, axis=0) *
                                 np.linalg.norm(gy, axis=0))
plot_data_on_faces(mesh, cos, vmin=-1, vmax=1)
mlab.quiver3d(*mesh.triangles_center.T, *gx, color=(1, 0, 0), mode="arrow")
q = mlab.quiver3d(*mesh.triangles_center.T, *gy, color=(0, 0, 1), mode="arrow")
q.scene.isometric_view()

#%% Map hexagonal grid from 2d to the 3D mesh
d = np.sqrt(3 / 4)
m = np.min((u.min(), v.min()))
mm = np.min((u.max(), v.max()))
xx = np.linspace(m * 1.05, mm * 1.05, 12)
yy = np.linspace(m * 1.05, mm * 1.05, 12) * d
p = np.array(np.meshgrid(xx, yy, 0, indexing="ij"))
Ejemplo n.º 6
0
plane = load_example_mesh("10x10_plane_hires")
scaling_factor = 0.03
plane.apply_scale(scaling_factor)
# Rotate to x-plane
t = np.eye(4)
theta = np.pi / 2 * 1.2
t[1:3, 1:3] = np.array([[np.cos(theta), np.sin(theta)],
                        [-np.sin(theta), np.cos(theta)]])
plane.apply_transform(t)

c.U_coupling.reset()
U_suh = c.U_coupling(plane.vertices) @ a
# Adapt mesh to the function and calculate new points
for i in range(2):
    g = np.linalg.norm(gradient(U_suh, plane), axis=0)
    face_ind = np.flatnonzero(g > g.max() * 0.05)
    plane = plane.subdivide(face_ind)
    U_suh = c.U_coupling(plane.vertices) @ a

U_sph = potential(plane.vertices,
                  alpha,
                  np.zeros(alpha.shape),
                  lmax=lmax,
                  normalization="energy",
                  R=R)

#%%

# Mask inside/outside using solid angle
mask = abs(c.U_coupling.matrix.sum(axis=1)) < 1e-6
Ejemplo n.º 7
0
# Load simple plane mesh that is centered on the origin
file_obj = file_obj = pkg_resources.resource_filename(
    "bfieldtools", "example_meshes/10x10_plane.obj")
planemesh = trimesh.load(file_obj, process=False)

# Generate a simple scalar function
r = np.linalg.norm(planemesh.vertices, axis=1)
vals = np.exp(-0.5 * (r / r.max()))

# triangle centers for plotting
tri_centers = planemesh.vertices[planemesh.faces].mean(axis=1).T
tri_centers[1] += 0.1

#%%
#  Calculate the gradient (e.g., flow from potential)
g = gradient(vals, planemesh, rotated=False)

# Plot function and its gradient as arrows

scene = mlab.figure(None,
                    bgcolor=(1, 1, 1),
                    fgcolor=(0.5, 0.5, 0.5),
                    size=(800, 800))

plot_data_on_vertices(planemesh, vals, ncolors=15, figure=scene)
vecs = mlab.quiver3d(*tri_centers,
                     *g,
                     color=(1, 1, 1),
                     mode="arrow",
                     scale_factor=5)
vecs.glyph.glyph_source.glyph_position = "center"
Ejemplo n.º 8
0
#%% Test against analytic formula
# Load simple plane mesh that is centered on the origin
file_obj = pkg_resources.resource_filename(
    "bfieldtools", "example_meshes/unit_disc.stl"
)
discmesh = trimesh.load(file_obj, process=True)
for ii in range(3):
    discmesh = discmesh.subdivide()
disc = MeshConductor(mesh_obj=discmesh)
weights = np.zeros(discmesh.vertices.shape[0])
weights[disc.inner_vertices] = 1
mlab.figure()
s = mlab.triangular_mesh(
    *discmesh.vertices.T, discmesh.faces, scalars=weights, colormap="viridis"
)
g = gradient(weights, discmesh, rotated=True)
mlab.quiver3d(*discmesh.vertices[discmesh.faces].mean(axis=1).T, *g)

test_points = np.zeros((100, 3))
test_points[:, 2] = np.linspace(0.0, 5, 100)
mlab.points3d(*test_points.T, scale_factor=0.1)

# Bfield for 1 Ampere current
B0 = magnetic_field_coupling(discmesh, test_points) @ weights
B1 = magnetic_field_coupling_analytic(discmesh, test_points) @ weights

# Analytic formula for unit disc
plt.plot(1e-7 * 2 * np.pi / (np.sqrt(test_points[:, 2] ** 2 + 1) ** 3))
# Field from the mesh
plt.plot(np.linalg.norm(B0, axis=1))
plt.plot(np.linalg.norm(B1, axis=1))
                         opacity=1.0)
s.enable_contours = True
s.contour.filled_contours = True
s.contour.number_of_contours = 30

#%%
#%% Calculate linear collocation BEM matrix
P_shield = shield.U_coupling(shieldmesh.vertices -
                             d * shieldmesh.vertex_normals)

#%%
#%% Solve equivalent stream function for the perfect linear mu-metal layer
I_shield = np.linalg.solve(-P_shield, P_prim @ sprim)
# I_shield = P_prim @ I_prim
s_shield = StreamFunction(I_shield, shield)
g = gradient(s_shield, shieldmesh, rotated=True)

#%% Plot the result
fig = mlab.figure(bgcolor=(1, 1, 1))
s0 = mlab.triangular_mesh(*shieldmesh.vertices.T,
                          shieldmesh.faces,
                          color=(0.5, 0.5, 0.5),
                          opacity=0.3)
s0.actor.property.backface_culling = False
s1 = s_shield.plot(False, 256)
# s1.actor.property.opacity=0.8
s1.actor.property.backface_culling = False
# s2 = s_shield.plot(True, 10)
mlab.quiver3d(*shieldmesh.triangles_center.T,
              *g,
              color=(1, 1, 1),