def main():
    start_time = time.time()  # Clocking start

    # MNIST Dataset load
    #mnist = DataSet(ds_path="D:/DataSet/mnist/").data
    # GPU configure
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True

    with tf.Session(config=config) as s:
        # BGAN Model
        model = bgan.BGAN(s)

        # Initializing
        s.run(tf.global_variables_initializer())
        # Load model & Graph & Weights
        saved_global_step = 0

        ckpt = tf.train.get_checkpoint_state('./model/')
        if ckpt and ckpt.model_checkpoint_path:
            # Restores from checkpoint
            model.saver.restore(s, ckpt.model_checkpoint_path)


            saved_global_step = int(ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1])
            print("[+] global step : %d" % saved_global_step, " successfully loaded")
        else:
            print('[-] No checkpoint file found')
Ejemplo n.º 2
0
def main():
    start_time = time.time()  # Clocking start

    # MNIST Dataset load
    #mnist = DataSet(ds_path="D:/DataSet/mnist/").data

    # Loading Cifar-10 DataSet
    ds = DataSet2(
        height=32,
        width=32,
        channel=3,
        ds_path=
        "/media/shar/240A27640A2731EA/shared2/Awesome-GANs-master/BGAN/cifar/",
        ds_name='cifar-10')

    ds_iter = DataIterator(
        x=iu.transform(ds.train_images, '127'),
        y=ds.train_labels,
        batch_size=train_step['batch_size'],
        label_off=True
    )  # using label # maybe someday, i'll change this param's name

    # Generated image save
    test_images = iu.transform(ds.test_images[:100], inv_type='127')
    iu.save_images(test_images,
                   size=[10, 10],
                   image_path=results['output'] + 'sample.png',
                   inv_type='127')

    # GPU configure
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True

    with tf.Session(config=config) as s:
        # BGAN Model
        model = bgan.BGAN(s)

        # Initializing
        s.run(tf.global_variables_initializer())
        # Load model & Graph & Weights
        saved_global_step = 0

        ckpt = tf.train.get_checkpoint_state('./model/')
        if ckpt and ckpt.model_checkpoint_path:
            # Restores from checkpoint
            model.saver.restore(s, ckpt.model_checkpoint_path)

            saved_global_step = int(
                ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1])
            print("[+] global step : %d" % saved_global_step,
                  " successfully loaded")
        else:
            print('[-] No checkpoint file found')

        d_loss = 0.
        d_overpowered = False
        global_step = saved_global_step
        start_epoch = global_step // (len(ds.train_images) // model.batch_size
                                      )  # recover n_epoch
        ds_iter.pointer = saved_global_step % (
            len(ds.train_images) // model.batch_size)  # recover n_iter
        for epoch in range(start_epoch, train_step['epochs']):

            #batch_x, _ = mnist.train.next_batch(model.batch_size)
            batch_x, _ = ds_iter.next_batch()
            batch_x = batch_x.reshape(-1, model.n_input)
            batch_z = np.random.uniform(
                -1., 1., [model.batch_size, model.z_dim]).astype(np.float32)

            # Update D network
            if not d_overpowered:
                _, d_loss = s.run([model.d_op, model.d_loss],
                                  feed_dict={
                                      model.x: batch_x,
                                      model.z: batch_z,
                                  })

            # Update G network
            _, g_loss = s.run([model.g_op, model.g_loss],
                              feed_dict={
                                  model.x: batch_x,
                                  model.z: batch_z,
                              })
            # Generated image save
            iu.save_images(samples,
                           size=[sample_image_height, sample_image_width],
                           image_path=sample_dir,
                           inv_type='127')

            d_overpowered = d_loss < g_loss / 2.
            # Logging
            if global_step % train_step['logging_interval'] == 0:
                batch_x, _ = ds_iter.next_batch()
                batch_z = np.random.uniform(
                    -1., 1.,
                    [model.batch_size, model.z_dim]).astype(np.float32)

                d_loss, g_loss, summary = s.run(
                    [model.d_loss, model.g_loss, model.merged],
                    feed_dict={
                        model.x: batch_x,
                        model.z: batch_z,
                    })

                # Print loss
                print("[+] Step %08d => " % global_step,
                      " D loss : {:.8f}".format(d_loss),
                      " G loss : {:.8f}".format(g_loss))

                # Training G model with sample image and noise
                sample_z = np.random.uniform(
                    -1., 1.,
                    [model.sample_num, model.z_dim]).astype(np.float32)
                samples = s.run(model.g, feed_dict={
                    model.z: sample_z,
                })

                samples = np.reshape(samples, [-1] + model.image_shape[1:])

                # Summary saver
                model.writer.add_summary(summary, global_step)

                # Export image generated by model G
                sample_image_height = model.sample_size
                sample_image_width = model.sample_size
                sample_dir = results['output'] + 'train_1{:08d}.png'.format(
                    global_step)

                # Generated image save
                iu.save_images(samples,
                               size=[sample_image_height, sample_image_width],
                               image_path=sample_dir,
                               inv_type='127')

                # Model save
                model.saver.save(s, results['model'], global_step=global_step)
                print(sample_dir)
            global_step += 1
    end_time = time.time() - start_time  # Clocking end

    # Elapsed time
    print("[+] Elapsed time {:.8f}s".format(end_time))

    # Close tf.Session
    s.close()
Ejemplo n.º 3
0
def main():
    start_time = time.time()  # Clocking start

    # MNIST Dataset load
    mnist = DataSet(ds_path="./").data

    # GPU configure
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True

    with tf.Session(config=config) as s:
        # BGAN Model
        model = bgan.BGAN(s)

        # Initializing
        s.run(tf.global_variables_initializer())

        sample_x, _ = mnist.test.next_batch(model.sample_num)
        sample_z = np.random.uniform(
            -1., 1., [model.sample_num, model.z_dim]).astype(np.float32)

        d_overpowered = False
        for step in range(train_step['global_step']):
            batch_x, _ = mnist.train.next_batch(model.batch_size)
            batch_x = batch_x.reshape(-1, model.n_input)
            batch_z = np.random.uniform(
                -1., 1., [model.batch_size, model.z_dim]).astype(np.float32)

            # Update D network
            if not d_overpowered:
                _, d_loss = s.run([model.d_op, model.d_loss],
                                  feed_dict={
                                      model.x: batch_x,
                                      model.z: batch_z,
                                  })

            # Update G network
            _, g_loss = s.run([model.g_op, model.g_loss],
                              feed_dict={
                                  model.x: batch_x,
                                  model.z: batch_z,
                              })

            d_overpowered = d_loss < g_loss / 2.

            if step % train_step['logging_interval'] == 0:
                batch_x, _ = mnist.train.next_batch(model.batch_size)
                batch_z = np.random.uniform(
                    -1., 1.,
                    [model.batch_size, model.z_dim]).astype(np.float32)

                d_loss, g_loss, summary = s.run(
                    [model.d_loss, model.g_loss, model.merged],
                    feed_dict={
                        model.x: batch_x,
                        model.z: batch_z,
                    })

                # Print loss
                print("[+] Step %08d => " % step,
                      " D loss : {:.8f}".format(d_loss),
                      " G loss : {:.8f}".format(g_loss))

                # Training G model with sample image and noise
                samples = s.run(model.g, feed_dict={
                    model.z: sample_z,
                })

                samples = np.reshape(samples, [-1] + model.image_shape[1:])

                # Summary saver
                model.writer.add_summary(summary, step)

                # Export image generated by model G
                sample_image_height = model.sample_size
                sample_image_width = model.sample_size
                sample_dir = results['output'] + 'train_{:08d}.png'.format(
                    step)

                # Generated image save
                iu.save_images(samples,
                               size=[sample_image_height, sample_image_width],
                               image_path=sample_dir)

                # Model save
                model.saver.save(s, results['model'], global_step=step)

    end_time = time.time() - start_time  # Clocking end

    # Elapsed time
    print("[+] Elapsed time {:.8f}s".format(end_time))

    # Close tf.Session
    s.close()