Ejemplo n.º 1
0
def open_dataset(project_id, base_path, datasets_path, name, mode, logger):
	name, ext = os.path.splitext(name)
	ext = ext.lower()
	if len(ext) == 0:
		ext = ".gz"
		name = "{0}.tsv{1}".format(name, ext)
	else:
		name = name + ext

	path = os.path.join(datasets_path, name)
	logger.debug("> {0}".format(os.path.relpath(path, base_path)))

	f = tsv.open(path, mode)

	tsv.write_param(f, "version", VERSION)
	tsv.write_param(f, "date", datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
	tsv.write_param(f, "PROJECT_ID", project_id)

	return f
Ejemplo n.º 2
0
def fetch(db, muts_path, out_path, params=None, columns=None, maps=None, predictors=None,
		  labels=None, calc_labels=None, muts_header=False, logger=None):
	
	params = params or {}
	columns = columns or [c.lower() for c in COORD_COLUMNS]
	maps = maps or []
	predictors = predictors or []
	labels = labels or []
	
	state = {}
	
	with tsv.open(out_path, "w") as wf:
		
		metadata = db.metadata
		if "version" in metadata:
			tsv.write_param(wf, "db-version", db.metadata["version"])
		tsv.write_param(wf, "fetched", dt.now().strftime("%Y-%m-%d %H:%M:%S"))
		for k, v in params.items():
			tsv.write_param(wf, k, v)
	
		tsv.write_line(wf, "ID", *[c.upper() for c in columns] + [m.upper() for m in maps] + predictors + labels)
	
		for row in fetch_iter(db, muts_path, maps=maps, predictors=predictors,
							  muts_header=muts_header, state=state, logger=logger):
			
			if calc_labels is not None:
				labels = calc_labels(row) or {}
			else:
				labels = {}
	
			xrefs = row["xrefs"]
			scores = row["scores"]

			tsv.write_line(wf, state[STATE_MUTATION].identifier,
				   *[row[c] for c in columns]
				   + [xrefs[m] for m in maps]
				   + [scores[p] for p in predictors]
				   + [labels.get(l, "") for l in labels])
	
	return {k : state[k] for k in [STATE_HITS, STATE_FAILS]}
Ejemplo n.º 3
0
def combination_recurrences(projects_set):
    log = task.logger

    config = GlobalConfig(task.conf)
    paths = PathsConfig(config)

    classifier, projects = projects_set

    classifier_id = classifier["id"]

    group_values = classifier["group_values"]
    short_values = classifier["group_short_values"]
    long_values = classifier["group_long_values"]

    group_name = classifier["group_name"]
    group_short_name = classifier["group_short_name"]
    group_long_name = classifier["group_long_name"]

    if len(group_values) == 0:
        group_file_prefix = classifier_id
    else:
        group_file_prefix = "{0}-{1}".format(classifier_id, group_short_name)

    group_file_prefix = normalize_id(group_file_prefix)

    log.info(
        "--- [{0} ({1}) ({2}) ({3})] {4}".format(
            classifier["name"], group_long_name, group_short_name, group_name, "-" * 30
        )
    )

    log.info("Creating database ...")

    db_path = make_temp_file(task, suffix="-{0}.db".format(group_file_prefix))
    log.debug("  > {0}".format(db_path))

    conn = sqlite3.connect(db_path)
    conn.row_factory = sqlite3.Row

    create_db(conn)

    log.info("Combining recurrences ...")

    c = conn.cursor()

    sample_total = 0

    project_ids = []
    for project in projects:
        project_ids += [project["id"]]

        log.info("  Project {0}:".format(project["id"]))

        projdb = ProjectDb(project["db"])

        project_sample_total = projdb.get_total_affected_samples()

        sample_total += project_sample_total

        log.info("    Total samples = {0}".format(project_sample_total))

        log.info("    Variant genes ...")

        count = 0
        for afg in projdb.affected_genes(join_variant=True, join_xrefs=True, join_rec=True):
            var = afg.var
            rec = afg.rec

            if rec.sample_freq is None:
                log.warn("Discarding variant gene without sample frequency: {0}".format(repr(afg)))
                continue

            start, end, ref, alt = var_to_tab(var)

            try:
                c.execute(
                    "INSERT INTO variants (chr, strand, start, ref, alt, xrefs) VALUES (?,?,?,?,?,?)",
                    (var.chr, var.strand, start, ref, alt, ",".join(var.xrefs)),
                )
                var_id = c.lastrowid
            except sqlite3.IntegrityError:
                c.execute(
                    "SELECT var_id FROM variants WHERE chr=? AND strand=? AND start=? AND ref=? AND alt=?",
                    (var.chr, var.strand, start, ref, alt),
                )
                r = c.fetchone()
                var_id = r[0]

            try:
                c.execute(
                    "INSERT INTO variant_genes (var_id, gene_id, impact, coding_region, prot_changes, sample_freq) VALUES (?,?,?,?,?,?)",
                    (var_id, afg.gene_id, afg.impact, afg.coding_region, afg.prot_changes, rec.sample_freq),
                )
            except sqlite3.IntegrityError:
                c.execute(
                    """
					UPDATE variant_genes
					SET sample_freq=sample_freq + ?
					WHERE var_id=? AND gene_id=?""",
                    (rec.sample_freq, var_id, afg.gene_id),
                )

            count += 1

        log.info("      {0} variant genes".format(count))

        log.info("    Genes ...")

        count = 0
        for gene in projdb.genes(join_xrefs=True, join_rec=True):
            rec = gene.rec

            if rec.sample_freq is None:
                continue

            c.execute("SELECT COUNT(*) FROM genes WHERE gene_id=?", (gene.id,))
            r = c.fetchone()
            if r[0] == 0:
                c.execute("INSERT INTO genes (gene_id, sample_freq) VALUES (?,?)", (gene.id, rec.sample_freq))
            else:
                c.execute("UPDATE genes SET sample_freq=sample_freq + ? WHERE gene_id=?", (rec.sample_freq, gene.id))
            count += 1

        log.info("      {0} genes".format(count))

        log.info("    Pathways ...")

        count = 0
        for pathway in projdb.pathways(join_rec=True):
            rec = pathway.rec

            if rec.sample_freq is None:
                continue

            c.execute("SELECT COUNT(*) FROM pathways WHERE pathway_id=?", (pathway.id,))
            r = c.fetchone()
            if r[0] == 0:
                c.execute("INSERT INTO pathways (pathway_id, sample_freq) VALUES (?,?)", (pathway.id, rec.sample_freq))
            else:
                c.execute(
                    "UPDATE pathways SET sample_freq=sample_freq + ? WHERE pathway_id=?", (rec.sample_freq, pathway.id)
                )
            count += 1

        log.info("      {0} pathways".format(count))

        projdb.close()

    log.info("Calculating proportions with {0} samples in total among projects ...".format(sample_total))

    if sample_total > 0:
        c.execute("UPDATE variant_genes SET sample_prop=CAST(sample_freq AS REAL)/{0}.0".format(sample_total))
        c.execute("UPDATE genes SET sample_prop=CAST(sample_freq AS REAL)/{0}.0".format(sample_total))
        c.execute("UPDATE pathways SET sample_prop=CAST(sample_freq AS REAL)/{0}.0".format(sample_total))

    c.close()
    conn.commit()

    log.info("Saving results ...")

    c = conn.cursor()

    base_path = paths.combination_path("recurrences")

    log.info("  Variant genes ...")

    with tsv.open(os.path.join(base_path, "variant_gene-{0}.tsv.gz".format(group_file_prefix)), "w") as f:
        tsv.write_param(f, "classifier", classifier["id"])
        tsv.write_param(f, "group_id", group_name)
        tsv.write_param(f, "group_short_name", group_short_name)
        tsv.write_param(f, "group_long_name", group_long_name)
        tsv.write_param(f, "projects", ",".join(project_ids))
        tsv.write_param(f, "SAMPLE_TOTAL", sample_total)
        tsv.write_line(
            f,
            "CHR",
            "STRAND",
            "START",
            "ALLELE",
            "GENE_ID",
            "IMPACT",
            "IMPACT_CLASS",
            "SAMPLE_FREQ",
            "SAMPLE_PROP",
            "PROT_CHANGES",
            "XREFS",
        )
        for r in c.execute(
            "SELECT * FROM variant_genes JOIN variants USING (var_id) ORDER BY chr*1, chr, strand, start, gene_id"
        ):
            strand, ref, alt = r["strand"], r["ref"], r["alt"]
            allele = "{0}/{1}".format(ref, alt)
            tsv.write_line(
                f,
                r["chr"],
                strand,
                r["start"],
                allele,
                r["gene_id"],
                r["impact"],
                TransFIC.class_name(r["impact"]),
                r["sample_freq"],
                r["sample_prop"],
                r["prot_changes"],
                r["xrefs"],
                null_value="-",
            )

    log.info("  Genes ...")

    with tsv.open(os.path.join(base_path, "gene-{0}.tsv.gz".format(group_file_prefix)), "w") as f:
        tsv.write_param(f, "classifier", classifier["id"])
        tsv.write_param(f, "group_id", group_name)
        tsv.write_param(f, "group_short_name", group_short_name)
        tsv.write_param(f, "group_long_name", group_long_name)
        tsv.write_param(f, "projects", ",".join(project_ids))
        tsv.write_param(f, "SAMPLE_TOTAL", sample_total)
        tsv.write_line(f, "GENE_ID", "SAMPLE_FREQ", "SAMPLE_PROP")
        for r in c.execute("SELECT * FROM genes ORDER BY gene_id"):
            tsv.write_line(f, r["gene_id"], r["sample_freq"], r["sample_prop"], null_value="-")

    log.info("  Pathways ...")

    with tsv.open(os.path.join(base_path, "pathway-{0}.tsv.gz".format(group_file_prefix)), "w") as f:
        tsv.write_param(f, "classifier", classifier["id"])
        tsv.write_param(f, "group_id", group_name)
        tsv.write_param(f, "group_short_name", group_short_name)
        tsv.write_param(f, "group_long_name", group_long_name)
        tsv.write_param(f, "projects", ",".join(project_ids))
        tsv.write_param(f, "SAMPLE_TOTAL", sample_total)
        tsv.write_line(f, "PATHWAY_ID", "SAMPLE_FREQ", "SAMPLE_PROP")
        for r in c.execute("SELECT * FROM pathways ORDER BY pathway_id"):
            tsv.write_line(f, r["pathway_id"], r["sample_freq"], r["sample_prop"], null_value="-")

    conn.close()

    remove_temp(task, db_path)
Ejemplo n.º 4
0
def create_datasets(project):
	log = task.logger

	config = GlobalConfig(task.conf)
	paths = PathsConfig(config)

	project_id = project["id"]

	log.info("--- [{0}] --------------------------------------------".format(project_id))

	project_path = project["path"]
	temp_path = project["temp_path"]

	datasets_path = paths.project_results_path(project_path)
	ensure_path_exists(datasets_path)

	sigdb = SigDb(config.sigdb_path)
	sigdb.open()

	projdb = ProjectDb(project["db"])

	gene_sym = projdb.get_gene_symbols()

	total_samples = projdb.get_total_affected_samples()

	log.info("Exporting variant genes ...")

	vf = open_dataset(project_id, project_path, datasets_path, "variant_gene", "w", log)
	tsv.write_param(vf, "SAMPLE_TOTAL", total_samples)
	tsv.write_line(vf, "VAR_ID", "CHR", "STRAND", "START", "ALLELE",
					"GENE_ID", "IMPACT", "IMPACT_CLASS",
					"SAMPLE_FREQ", "SAMPLE_PROP",
					"CODING_REGION", "PROTEIN_CHANGES", "INTOGEN_DRIVER", "XREFS")

	sf = open_dataset(project_id, project_path, datasets_path, "variant-samples", "w", log)
	tsv.write_line(sf, "VAR_ID", "CHR", "STRAND", "START", "ALLELE", "SAMPLE")

	count = 0
	for afg in projdb.affected_genes(join_variant=True, join_samples=True, join_xrefs=True, join_rec=True):
		var = afg.var
		rec = afg.rec

		start, end, ref, alt = var_to_tab(var)

		allele = "{0}/{1}".format(ref, alt)

		xrefs = [xref for xref in var.xrefs]
		if sigdb.exists_variant(var.chr, start):
			xrefs += ["I:1"]
		xrefs = ",".join(xrefs)

		intogen_driver = 1 if sigdb.exists_gene(afg.gene_id) else 0

		tsv.write_line(vf, var.id, var.chr, var.strand, start, allele,
						afg.gene_id, afg.impact, TransFIC.class_name(afg.impact),
						rec.sample_freq, rec.sample_prop,
						afg.coding_region, afg.prot_changes, intogen_driver, xrefs, null_value="\N")

		for sample in var.samples:
			tsv.write_line(sf, var.id, var.chr, var.strand, start, allele, sample.name, null_value="\N")

		count += 1

	vf.close()
	sf.close()

	log.info("  {0} variant genes".format(count))

	log.info("Exporting consequences ...")

	cf = open_dataset(project_id, project_path, datasets_path, "consequence", "w", log)
	tsv.write_line(cf, "VAR_ID", "CHR", "STRAND", "START", "ALLELE", "TRANSCRIPT_ID",
				   "CT", "GENE_ID", "SYMBOL", "UNIPROT_ID", "PROTEIN_ID", "PROTEIN_POS", "AA_CHANGE",
					"SIFT_SCORE", "SIFT_TRANSFIC", "SIFT_TRANSFIC_CLASS",
					"PPH2_SCORE", "PPH2_TRANSFIC", "PPH2_TRANSFIC_CLASS",
					"MA_SCORE", "MA_TRANSFIC", "MA_TRANSFIC_CLASS",
					"IMPACT", "IMPACT_CLASS")

	count = 0
	for csq in projdb.consequences(join_variant=True):
		var = csq.var
		start, end, ref, alt = var_to_tab(var)

		allele = "{0}/{1}".format(ref, alt)

		uniprot = protein = protein_pos = aa_change = None
		sift_score = sift_tfic = sift_tfic_class = None
		pph2_score = pph2_tfic = pph2_tfic_class = None
		ma_score = ma_tfic = ma_tfic_class = None

		if so.match(csq.ctypes, so.ONCODRIVEFM):
			uniprot, protein = csq.uniprot, csq.protein

		if so.match(csq.ctypes, so.NON_SYNONYMOUS):
			protein_pos, aa_change = csq.protein_pos, csq.aa_change
			sift_score, sift_tfic, sift_tfic_class = csq.sift_score, csq.sift_tfic, TransFIC.class_name(csq.sift_tfic_class)
			pph2_score, pph2_tfic, pph2_tfic_class = csq.pph2_score, csq.pph2_tfic, TransFIC.class_name(csq.pph2_tfic_class)
			ma_score, ma_tfic, ma_tfic_class = csq.ma_score, csq.ma_tfic, TransFIC.class_name(csq.ma_tfic_class)

		tsv.write_line(cf, var.id, var.chr, var.strand, start, allele, csq.transcript,
						",".join(csq.ctypes), csq.gene, gene_sym.get(csq.gene),
						uniprot, protein, protein_pos, aa_change,
						sift_score, sift_tfic, sift_tfic_class,
						pph2_score, pph2_tfic, pph2_tfic_class,
						ma_score, ma_tfic, ma_tfic_class,
						csq.impact, TransFIC.class_name(csq.impact), null_value="\N")
		count += 1

	cf.close()

	log.info("  {0} consequences".format(count))

	log.info("Exporting genes ...")

	gf = open_dataset(project_id, project_path, datasets_path, "gene", "w", log)
	tsv.write_param(gf, "SAMPLE_TOTAL", total_samples)
	tsv.write_line(gf, "GENE_ID", "FM_PVALUE", "FM_QVALUE", "FM_EXC_CAUSE",
				   "CLUST_ZSCORE", "CLUST_PVALUE", "CLUST_QVALUE", "CLUST_EXC_CAUSE", "CLUST_COORDS",
				   "SAMPLE_FREQ", "SAMPLE_PROP", "INTOGEN_DRIVER")


	for gene in projdb.genes(join_rec=True):
		rec = gene.rec

		if rec.sample_freq is None or rec.sample_freq == 0:
			continue

		intogen_driver = 1 if sigdb.exists_gene(gene.id) else 0

		tsv.write_line(gf, gene.id, gene.fm_pvalue, gene.fm_qvalue, gene.fm_exc_cause,
					   gene.clust_zscore, gene.clust_pvalue, gene.clust_qvalue, gene.clust_exc_cause, gene.clust_coords,
					   rec.sample_freq or 0, rec.sample_prop or 0,
					   intogen_driver, null_value="\N")

	gf.close()

	log.info("Exporting pathways ...")

	pf = open_dataset(project_id, project_path, datasets_path, "pathway", "w", log)
	tsv.write_param(pf, "SAMPLE_TOTAL", total_samples)
	tsv.write_line(pf, "PATHWAY_ID", "GENE_COUNT", "FM_ZSCORE", "FM_PVALUE", "FM_QVALUE",
				   "SAMPLE_FREQ", "SAMPLE_PROP", "GENE_FREQ", "GENE_TOTAL", "GENE_PROP")

	for pathway in projdb.pathways(join_rec=True):
		rec = pathway.rec

		if rec.sample_freq is None or rec.sample_freq == 0:
			continue

		tsv.write_line(pf, pathway.id, pathway.gene_count, pathway.fm_zscore, pathway.fm_pvalue, pathway.fm_qvalue,
						rec.sample_freq or 0, rec.sample_prop or 0, rec.gene_freq or 0, pathway.gene_count, rec.gene_prop or 0, null_value="\N")

	pf.close()

	if not config.skip_oncodrivefm:

		log.info("Exporting genes per sample functional impact ...")

		with open_dataset(project_id, project_path, datasets_path, "gene_sample-fimpact", "w", log) as f:
			tsv.write_line(f, "GENE_ID", "SAMPLE",
					   "SIFT_SCORE", "SIFT_TRANSFIC", "SIFT_TRANSFIC_CLASS",
					   "PPH2_SCORE", "PPH2_TRANSFIC", "PPH2_TRANSFIC_CLASS",
					   "MA_SCORE", "MA_TRANSFIC", "MA_TRANSFIC_CLASS")

			for fields in projdb.sample_gene_fimpacts():
				(gene, sample,
					sift_score, sift_tfic, sift_tfic_class,
					pph2_score, pph2_tfic, pph2_tfic_class,
					ma_score, ma_tfic, ma_tfic_class) = fields
				tsv.write_line(f, gene, sample,
						   sift_score, sift_tfic, TransFIC.class_name(sift_tfic_class),
						   pph2_score, pph2_tfic, TransFIC.class_name(pph2_tfic_class),
						   ma_score, ma_tfic, TransFIC.class_name(ma_tfic_class), null_value="\N")

	projdb.close()

	sigdb.close()

	log.info("Saving project configuration ...")

	projres = ProjectResults(project)

	with open_dataset(project_id, project_path, datasets_path, "project.tsv", "w", log) as f:
		names = ["ASSEMBLY", "SAMPLES_TOTAL"]
		values = [project["assembly"], total_samples]
		names, values = projres.get_annotations_to_save(config.project.annotations, project["annotations"], names=names, values=values)
		tsv.write_line(f, *names)
		tsv.write_line(f, *values, null_value="\N")

	projects_port = task.ports("projects_out")
	projects_port.send(project)
Ejemplo n.º 5
0
def drivers():
	log = task.logger

	config = GlobalConfig(task.conf)
	paths = PathsConfig(config)

	db_path = paths.results_path("drivers.db")
	db = SigDb(db_path)
	db.open()

	log.info("Variants ...")

	path = paths.combination_path("recurrences", "variant_gene-global-all.tsv.gz")
	with tsv.open(path, "r") as f:
		types = (str, str, int, str)
		for fields in tsv.lines(f, types, columns=("CHR", "STRAND", "START", "ALLELE"), header=True):
			chr, strand, start, allele = fields[:4]
			db.add_variant(chr, start)

	log.info("Genes ...")

	gene_sites = {}

	gene_fm = set()
	gene_clust = set()

	#SPECIAL_THRESHOLD = ["C18", "C34"]
	SPECIAL_THRESHOLD = []

	log.info("  OncodriveFM ...")

	filename_re = re.compile(r"gene-cancer_site-(.+)\.tsv.gz")
	base_path = paths.combination_path("oncodrivefm")
	for path in os.listdir(base_path):
		m = filename_re.match(path)
		if not m:
			continue

		cancer_site_code = m.group(1)

		if cancer_site_code in SPECIAL_THRESHOLD:
			threshold = 1e-6
		else:
			threshold = 0.01

		with tsv.open(os.path.join(base_path, path), "r") as f:
			params = tsv.params(f)
			cancer_site_name = params["group_long_name"]
			for fields in tsv.lines(f, (str, float), columns=("ID", "QVALUE"), header=True):
				gene, qvalue = fields
				if qvalue < threshold:
					add_cancer_site(gene_sites, gene, cancer_site_code, cancer_site_name)

					gene_fm.add(gene)

	log.info("  OncodriveCLUST ...")

	filename_re = re.compile(r"cancer_site-(.+)\.tsv.gz")
	base_path = paths.combination_path("oncodriveclust")
	for path in os.listdir(base_path):
		m = filename_re.match(path)
		if not m:
			continue

		cancer_site_code = m.group(1)

		with tsv.open(os.path.join(base_path, path), "r") as f:
			params = tsv.params(f)
			cancer_site_name = params["group_long_name"]
			for fields in tsv.lines(f, (str, float), columns=("ID", "QVALUE"), header=True):
				gene, qvalue = fields
				if qvalue < 0.05:
					add_cancer_site(gene_sites, gene, cancer_site_code, cancer_site_name)

					gene_clust.add(gene)

	log.info("  Updating db ...")
	sig_genes = gene_fm | gene_clust
	for gene in sig_genes:
		db.add_gene(gene, gene in gene_fm, gene in gene_clust)

	log.info("Saving driver genes cancer sites dataset ...")
	path = paths.results_path("gene-driver_cancer_sites.tsv")
	log.debug("> {}".format(path))
	with open(path, "w") as f:
		tsv.write_param(f, "date", datetime.now())
		tsv.write_line(f, "GENE_ID", "FM", "CLUST", "CANCER_SITES_COUNT", "CANCER_SITE_CODES", "CANCER_SITE_NAMES")
		for gene, sites in gene_sites.items():
			tsv.write_line(f, gene,
						   1 if gene in gene_fm else 0,
						   1 if gene in gene_clust else 0,
						   len(sites),
						   ", ".join(sorted([code for code, name in sites])),
						   ", ".join(sorted([name for code, name in sites])))

	db.commit()
	db.close()
Ejemplo n.º 6
0
def combination_oncodrivefm(projects_set):
	log = task.logger

	config = GlobalConfig(task.conf)
	paths = PathsConfig(config)

	classifier, projects = projects_set

	classifier_id = classifier["id"]

	group_values = classifier["group_values"]
	short_values = classifier["group_short_values"]
	long_values = classifier["group_long_values"]

	group_name = classifier["group_name"]
	group_short_name = classifier["group_short_name"]
	group_long_name = classifier["group_long_name"]

	if len(group_values) == 0:
		group_file_prefix = classifier_id
	else:
		group_file_prefix = "{0}-{1}".format(classifier_id, group_short_name)

	group_file_prefix = normalize_id(group_file_prefix)

	log.info("--- [{0} ({1}) ({2}) ({3})] {4}".format(
		classifier["name"], group_long_name, group_short_name, group_name, "-" * 30))

	log.info("Exporting project data ...")

	base_path = make_temp_dir(task, suffix=".{0}".format(group_file_prefix))

	log.debug("> {0}".format(base_path))

	project_ids = []
	gene_files = []
	pathway_files = []
	for project in projects:
		project_id = project["id"]
		project_ids += [project_id]

		log.info("  Project {0}:".format(project["id"]))

		projdb = ProjectDb(project["db"])

		log.info("    Genes ...")

		count = 0
		file_path = os.path.join(base_path, "{0}-genes.tsv".format(project_id))
		gene_files += [file_path]
		with open(file_path, "w") as f:
			tsv.write_param(f, "classifier", classifier_id)
			tsv.write_param(f, "group_id", group_name)
			tsv.write_param(f, "slice", project_id)
			tsv.write_line(f, "GENE_ID", "PVALUE")
			for gene in projdb.genes():
				if gene.fm_pvalue is not None:
					tsv.write_line(f, gene.id, gene.fm_pvalue, null_value="-")
					count += 1

		log.info("      {0} genes".format(count))

		log.info("    Pathways ...")

		count = 0
		file_path = os.path.join(base_path, "{0}-pathways.tsv".format(project_id))
		pathway_files += [file_path]
		with open(file_path, "w") as f:
			tsv.write_param(f, "classifier", classifier_id)
			tsv.write_param(f, "group_id", group_name)
			tsv.write_param(f, "slice", project_id)
			tsv.write_line(f, "PATHWAY_ID", "ZSCORE")
			for pathway in projdb.pathways():
				if pathway.fm_zscore is not None:
					tsv.write_line(f, pathway.id, pathway.fm_zscore, null_value="-")
					count += 1

		log.info("      {0} pathways".format(count))

		projdb.close()

	log.info("Combining ...")

	combination_path = paths.combination_path("oncodrivefm")

	log.info("  Genes ...")

	cmd = " ".join([
			"oncodrivefm-combine",
			"-m median-empirical",
			"-o '{0}'".format(combination_path),
			"-n 'gene-{0}'".format(group_file_prefix),
			"-D 'classifier={0}'".format(classifier_id),
			"-D 'group_id={0}'".format(group_name),
			"-D 'group_short_name={0}'".format(group_short_name),
			"-D 'group_long_name={0}'".format(group_long_name),
			"--output-format tsv.gz"
	] + ["'{0}'".format(name) for name in gene_files])

	log.debug(cmd)

	ret_code = subprocess.call(cmd, shell=True)
	if ret_code != 0:
		#log.error("OncodriveFM error while combining gene pvalues:\n{0}".format(cmd))
		#return -1
		raise Exception("OncodriveFM error while combining gene pvalues:\n{0}".format(cmd))

	log.info("  Pathways ...")

	cmd = " ".join([
			"oncodrivefm-combine",
			"-m median-zscore",
			"-o '{0}'".format(combination_path),
			"-n 'pathway-{0}'".format(group_file_prefix),
			"-D 'classifier={0}'".format(classifier_id),
			"-D 'group_id={0}'".format(group_name),
			"-D 'group_short_name={0}'".format(group_short_name),
			"-D 'group_long_name={0}'".format(group_long_name),
			"--output-format tsv.gz"
	] + ["'{0}'".format(name) for name in pathway_files])

	log.debug(cmd)

	ret_code = subprocess.call(cmd, shell=True)
	if ret_code != 0:
		#log.error("OncodriveFM error while combining pathway zscores:\n{0}".format(cmd))
		#return -1
		raise Exception("OncodriveFM error while combining pathway zscores:\n{0}".format(cmd))

	remove_temp(task, base_path)