Ejemplo n.º 1
0
 def __init__(self, ref_im, loss_str, eps):
     super(LossBuilder, self).__init__()
     assert ref_im.shape[2]==ref_im.shape[3]
     im_size = ref_im.shape[2]
     factor = 1024//im_size
     assert im_size*factor==1024
     self.D = BicubicDownSample(factor=factor)
     self.ref_im = ref_im
     self.parsed_loss = [loss_term.split('*') for loss_term in loss_str.split('+')]
     self.eps = eps
Ejemplo n.º 2
0
 def __init__(self, ref_im, loss_str, eps):
     super().__init__()
     assert ref_im.shape[2] == ref_im.shape[3]
     im_size = ref_im.shape[2]
     factor = 1024 // im_size
     assert im_size * factor == 1024
     self.D = BicubicDownSample(factor=factor)
     self.ref_im = ref_im
     self.parsed_loss = [
         loss_term.split("*") for loss_term in loss_str.split("+")
     ]
     self.eps = eps
     if "DISC" in set([loss_type for _, loss_type in self.parsed_loss]):
         self.d_basic = stylegan.D_basic()
         self.d_basic.load_state_dict(
             torch.load("karras2019stylegan-ffhq-1024x1024.for_d_basic.pt"))
Ejemplo n.º 3
0
    def __init__(self, ref_im, loss_str, eps):

        super(LossBuilder, self).__init__()

        if ref_im.shape[2]!=ref_im.shape[3]:
            print('ensure that your image dimensions are divisible by 4')

        assert ref_im.shape[2]==ref_im.shape[3]

        im_size = ref_im.shape[2]
        factor=1024//im_size

        if im_size*factor!=1024:
            print('ensure that your image dimensions are divisible by 4')

        assert im_size*factor==1024

        self.D = BicubicDownSample(factor=factor)
        self.ref_im = ref_im
        self.parsed_loss = [loss_term.split('*') for loss_term in loss_str.split('+')]
        self.eps = eps
Ejemplo n.º 4
0
args = parser.parse_args()

cache_dir = Path(args.cache_dir)
cache_dir.mkdir(parents=True, exist_ok=True)

output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)

print("Downloading Shape Predictor")
f = open_url(
    "https://drive.google.com/uc?id=1xtxqSWYHADTEO9ptPG5174DbV3FYJPev",
    cache_dir=cache_dir,
    return_path=True)
predictor = dlib.shape_predictor(f)

for im in Path(args.input_dir).glob("*.*"):
    faces = align_face(str(im), predictor)

    for i, face in enumerate(faces):
        if (args.output_size):
            factor = 1024 // args.output_size
            assert args.output_size * factor == 1024
            D = BicubicDownSample(factor=factor)
            face_tensor = torchvision.transforms.ToTensor()(face).unsqueeze(
                0).cuda()
            face_tensor_lr = D(face_tensor)[0].cpu().detach().clamp(0, 1)
            face = torchvision.transforms.ToPILImage()(face_tensor_lr)

        face.save(Path(args.output_dir) / (im.stem + f"_{i}.png"))
Ejemplo n.º 5
0
phase_base_dir = '../edsr_bases/'
phase_test_dir = '../demo/'
hr_dir = '../hr/'
lr_dir = '../lr/'
img_name = '0833'
hr_img = imread(os.path.join(hr_dir, img_name+ '.png')).astype(np.float32)
lr_img = imread(os.path.join(lr_dir, img_name+ '.png')).astype(np.float32)
test_img = imread(os.path.join(phase_test_dir, img_name+ '_hr_145.png')).astype(np.floa\
t32)

hr_tensor = torch.tensor(hr_img.reshape(1, *hr_img.shape)).type('torch.DoubleTensor')
lr_tensor = torch.tensor(lr_img.reshape(1, *lr_img.shape)).type('torch.DoubleTensor')
test_tensor = torch.tensor(test_img.reshape(1, *test_img.shape)).type('torch.DoubleTens\
or')

bds = BicubicDownSample()
ds_hr_tensor = bds(hr_tensor, nhwc=True)

l = nn.MSELoss()
ls_loss = l(ds_hr_tensor, lr_tensor)
# hr_loss = l(base_tensor, hr_tensor)
# print(ls_loss): 0.1046

diff = test_tensor - hr_tensor
diff_div = diff.div(255)
#print(diff_div)

mse = diff_div.pow(2).mean()
print(mse)

psnr = -10 * math.log10(mse)
Ejemplo n.º 6
0
    def __init__(self, config):
        super().__init__()
        self.config = config
        if config['image_size'][0] != config['image_size'][1]:
            raise Exception('Non-square images are not supported yet.')

        self.reconstruction = 'invert'
        #self.project = config["project"]
        self.steps = 1000

        self.layer_in = None
        self.best = None
        self.skip = None
        self.lr = 0.1
        self.lr_record = []
        self.current_step = 0

        # prepare images
        device = 'cuda'
        resized_imgs = []
        original_imgs = []

        transform_lpips = get_transformation(256)
        transform = get_transformation(256)

        for imgfile in '/content/dcgan/alex.png':
            resized_imgs.append(
                transform_lpips(Image.open(imgfile).convert("RGB")))
            original_imgs.append(transform(Image.open(imgfile).convert("RGB")))

        self.resized_imgs = torch.stack(resized_imgs, 0).to(device)
        self.original_imgs = torch.stack(original_imgs, 0).to(device)

        self.downsampler_1024_image = BicubicDownSample(4)

        # Load models and pre-trained weights
        gen = Generator(1024, 512, 8)
        gen.load_state_dict(torch.load(config["ckpt"])["g_ema"], strict=False)
        gen.eval()
        self.gen = gen.to(device)
        self.gen.start_layer = 0
        self.gen.end_layer = 4

        self.mpl = MappingProxy(torch.load('gaussian_fit.pt'))
        self.percept = lpips.PerceptualLoss(model="net-lin",
                                            net="vgg",
                                            use_gpu=device.startswith("cuda"))

        self.cls = imagenet_models.resnet50()
        state_dict = torch.load('imagenet_l2_3_0.pt')['model']
        new_dict = OrderedDict()

        for key in state_dict.keys():
            if 'module.model' in key:
                new_dict[key[13:]] = state_dict[key]

        self.cls.load_state_dict(new_dict)
        self.cls.to(config['device'])

        bs = self.original_imgs.shape[0]

        # initialization
        if self.gen.start_layer == 0:
            noises_single = self.gen.make_noise(bs)
            self.noises = []
            for noise in noises_single:
                self.noises.append(noise.normal_())
            self.latent_z = torch.randn((bs, 18, 512),
                                        dtype=torch.float,
                                        requires_grad=True,
                                        device='cuda')
            self.gen_outs = [None]
        else:
            # restore noises
            self.noises = torch.load(config['saved_noises'][0])
            self.latent_z = torch.load(config['saved_noises'][1]).to(
                config['device'])
            self.gen_outs = torch.load(config['saved_noises'][2])
            self.latent_z.requires_grad = True