Ejemplo n.º 1
0
def main():
    import sys
    if len(sys.argv) <= 1:
        print "Usage: example1.py file1.fil [file2.fil ...]"
        sys.exit(-1)
    filenames = sys.argv[1:]

    h_filterbank = read_sigproc(filenames, gulp_nframe=16000, core=0)
    h_filterbank = scrunch(h_filterbank, 16, core=0)
    d_filterbank = copy(h_filterbank, space='cuda', gpu=0, core=2)
    blocks.print_header(d_filterbank)
    with bfp.block_scope(core=2, gpu=0):
        d_filterbankT = transpose(d_filterbank,
                                  ['pol', 'freq', 'time'])  #[1,2,0])
        d_dispersionbankT = fdmt(d_filterbankT, max_dm=282.52)
        blocks.print_header(d_dispersionbankT)
        d_dispersionbank = transpose(d_dispersionbankT,
                                     ['time', 'pol', 'dispersion'])  #[2,0,1])
    h_dispersionbank = copy(d_dispersionbank, space='system', core=3)
    write_pgm(h_dispersionbank, core=3)

    pipeline = bfp.get_default_pipeline()
    graph_filename = "example1.dot"
    with open(graph_filename, 'w') as dotfile:
        dotfile.write(str(pipeline.dot_graph()))
        print "Wrote graph definition to", graph_filename
    pipeline.run()
    print "All done"
Ejemplo n.º 2
0
def main(args):
    h_filterbank = read_sigproc(args.filename, gulp_nframe=16000, core=0)
    h_filterbank = scrunch(h_filterbank, 16, core=0)
    d_filterbank = copy(h_filterbank, space='cuda', gpu=0, core=2)
    blocks.print_header(d_filterbank)
    with bfp.block_scope(core=2, gpu=0):
        d_filterbankT = transpose(d_filterbank,
                                  ['pol', 'freq', 'time'])  #[1,2,0])
        d_dispersionbankT = fdmt(d_filterbankT, max_dm=282.52)
        blocks.print_header(d_dispersionbankT)
        d_dispersionbank = transpose(d_dispersionbankT,
                                     ['time', 'pol', 'dispersion'])  #[2,0,1])
    h_dispersionbank = copy(d_dispersionbank, space='system', core=3)
    write_pgm(h_dispersionbank, core=3)

    pipeline = bfp.get_default_pipeline()
    graph_filename = "example1.dot"
    with open(graph_filename, 'w') as dotfile:
        dotfile.write(str(pipeline.dot_graph()))
        print("Wrote graph definition to", graph_filename)
    pipeline.run()
    print("All done")
Ejemplo n.º 3
0
    # Read from guppi raw file
    b_read = blocks.read_guppi_raw(filelist, core=0, buffer_nframe=2)
    b_read = views.rename_axis(b_read, 'freq', 'channel')

    #############
    ##  HIRES  ##
    #############

    # Buffer up two blocks & reshape to allow longer FFT
    with bf.block_scope(fuse=True, core=1):
        b_gup2 = views.split_axis(b_read,
                                  axis='time',
                                  n=n_chunks,
                                  label='time_chunk')
        b_gup2 = blocks.transpose(
            b_gup2, axes=['time', 'channel', 'time_chunk', 'fine_time', 'pol'])
        b_gup2 = views.reverse_scale(b_gup2, 'time_chunk')
        b_gup2 = views.merge_axes(b_gup2,
                                  'time_chunk',
                                  'fine_time',
                                  label='fine_time')
        blocks.print_header(b_gup2)

    # Copy over to GPU and FFT
    with bf.block_scope(fuse=True, core=2):
        b_copy = blocks.copy(b_gup2, space='cuda')
        b_fft = blocks.fft(b_copy, axes='fine_time', axis_labels='freq')
        b_ffs = blocks.fftshift(b_fft, axes='freq')
        #blocks.print_header(b_fft)
        b_pow = blocks.detect(b_ffs, mode='stokes')
        b_copp = blocks.copy(b_pow, space='system')
Ejemplo n.º 4
0
               ospan.data.shape,
               'i',
               'j',
               'k',
               'l',
               a=ispan.data,
               b=ospan.data)


def grab_first(iring, axis=0):
    return GrabFirstBlock(iring, axis)


with bfp.Pipeline() as pipeline:
    raw_guppi = new_read_guppi_raw(
        ['blc1_guppi_57388_HIP113357_0010.0000.raw'], buffer_nframe=1)
    g_guppi = blocks.copy(raw_guppi, space='cuda', buffer_nframe=1)
    ffted = blocks.fft(g_guppi,
                       axes='fine_time',
                       axis_labels='freq',
                       buffer_nframe=1)
    modulo = blocks.detect(ffted, mode='stokes', buffer_nframe=1)
    # Take I
    first_element = grab_first(modulo, 0)
    transposed = blocks.transpose(first_element,
                                  ['channel', 'time', 'pol', 'freq'])
    renamed = views.rename_axis(transposed, 'channel', 'beam')
    blocks.print_header(renamed)
    blocks.write_sigproc(renamed)
    pipeline.run()
Ejemplo n.º 5
0
    b_read = MbBinaryFileReadBlock(filenames,
                                   n_beams,
                                   fine_time_len,
                                   n_pol,
                                   gulp_nframe=1,
                                   buffer_nframe=4,
                                   core=0)
    blocks.print_header(b_read)

    # Reshape array for midres FFT
    with bf.block_scope(fuse=True, core=1):
        b_midres = views.split_axis(b_read,
                                    axis='fine_time',
                                    n=n_fft_midres,
                                    label='fft_window')
        b_midres = blocks.transpose(
            b_midres, axes=['time', 'fine_time', 'beam', 'fft_window', 'pol'])
        b_midres = views.merge_axes(b_midres, 'time', 'fine_time')
        b_midres = blocks.copy(b_midres,
                               space='system',
                               gulp_nframe=n_gulp_midres)
        #blocks.print_header(b_midres)

    # Do midres FFT + Detect on GPU
    with bf.block_scope(fuse=True, core=3):
        b_midres = blocks.copy(b_midres, space='cuda')
        b_midres = blocks.FftBlock(b_midres,
                                   axes='fft_window',
                                   axis_labels='freq')
        b_midres = blocks.fftshift(b_midres, axes='freq')
        b_midres = blocks.detect(b_midres, mode='stokes')
        b_midres = blocks.accumulate(b_midres, n_int_midres)
Ejemplo n.º 6
0
    n_t = n_blocks / n_int / n_chunks
    n_chan = n_coarse * n_t_per_coarse * n_chunks

    filelist = sorted(glob.glob(os.path.join(filepath, '*.raw')))

    # Read from guppi raw file
    b_guppi = blocks.read_guppi_raw(filelist, core=1, buffer_nframe=4)
    b_gup2 = views.rename_axis(b_guppi, 'freq', 'channel')

    # Buffer up two blocks & reshape to allow longer FFT
    with bf.block_scope(fuse=True, core=2):
        b_gup2 = views.split_axis(b_gup2,
                                  axis='time',
                                  n=n_chunks,
                                  label='time_chunk')
        b_gup2 = blocks.transpose(
            b_gup2, axes=['time', 'channel', 'time_chunk', 'fine_time', 'pol'])
        b_gup2 = views.reverse_scale(b_gup2, 'time_chunk')
        b_gup2 = views.merge_axes(b_gup2,
                                  'time_chunk',
                                  'fine_time',
                                  label='fine_time')
        blocks.print_header(b_gup2)

        #blocks.print_header(b_gup2)

    # blocks.print_header(b_gup2)

    # Copy over to GPU and FFT
    with bf.block_scope(fuse=True, core=3):
        b_copy = blocks.copy(b_gup2, space='cuda')
        b_fft = blocks.fft(b_copy, axes='fine_time', axis_labels='freq')