Ejemplo n.º 1
0
def create_dataset(source_or_dataset,
                   dataset_args,
                   args,
                   api=None,
                   path=None,
                   session_file=None,
                   log=None,
                   dataset_type=None):
    """Creates remote dataset from source, dataset or datasets list

    """
    if api is None:
        api = bigml.api.BigML()
    message = dated("Creating dataset.\n")
    log_message(message, log_file=session_file, console=args.verbosity)
    dataset = api.create_dataset(source_or_dataset, dataset_args)
    suffix = "_" + dataset_type if dataset_type else ""
    log_created_resources("dataset%s" % suffix,
                          path,
                          bigml.api.get_dataset_id(dataset),
                          open_mode='a')
    dataset_id = check_resource_error(dataset, "Failed to create dataset: ")
    try:
        dataset = check_resource(dataset,
                                 api.get_dataset,
                                 query_string=ALL_FIELDS_QS)
    except ValueError, exception:
        sys.exit("Failed to get a finished dataset: %s" % str(exception))
Ejemplo n.º 2
0
def create_dataset(origin_resource,
                   dataset_args,
                   args,
                   api=None,
                   path=None,
                   session_file=None,
                   log=None,
                   dataset_type=None):
    """Creates remote dataset from source, dataset, cluster or datasets list

    """
    if api is None:
        api = bigml.api.BigML()
    message = dated("Creating dataset.\n")
    log_message(message, log_file=session_file, console=args.verbosity)
    check_fields_struct(dataset_args, "dataset")

    # if --json-query or --sql-query are used and no names are set for
    # the datasets, we create default naming to A, B, C, etc. for the datasets
    # to be used as origin

    if ((hasattr(args, 'sql_query') and args.sql_query) or \
            (hasattr(args, 'json_query') and args.sql_query)) and \
            isinstance(origin_resource, list) and \
            ((not isinstance(origin_resource[0], dict)) or \
            origin_resource[0].get("name") is None):
        for index, element in enumerate(origin_resource):
            if index < len(DS_NAMES):
                if isinstance(element, dict):
                    if element.get("resource") is not None:
                        element = {"id": element["resource"]}
                    element.update({"name": DS_NAMES[index]})
                    origin_resource[index] = element
                elif isinstance(element, basestring):
                    origin_resource[index] = {
                        "id": element,
                        "name": DS_NAMES[index]
                    }

    dataset = api.create_dataset(origin_resource, dataset_args, retries=None)
    suffix = "_" + dataset_type if dataset_type else ""
    log_created_resources("dataset%s" % suffix,
                          path,
                          bigml.api.get_dataset_id(dataset),
                          mode='a')
    dataset_id = check_resource_error(dataset, "Failed to create dataset: ")
    try:
        dataset = check_resource(dataset,
                                 api.get_dataset,
                                 query_string=ALL_FIELDS_QS,
                                 raise_on_error=True)
    except Exception, exception:
        sys.exit("Failed to get a finished dataset: %s" % str(exception))
Ejemplo n.º 3
0
def create_dataset(source_or_dataset, dataset_args, args, api=None, path=None,
                   session_file=None, log=None, dataset_type=None):
    """Creates remote dataset

    """
    if api is None:
        api = bigml.api.BigML()
    message = dated("Creating dataset.\n")
    log_message(message, log_file=session_file, console=args.verbosity)
    dataset = api.create_dataset(source_or_dataset, dataset_args)
    suffix = "_" + dataset_type if dataset_type else ""
    log_created_resources("dataset%s" % suffix, path,
                          bigml.api.get_dataset_id(dataset))
    check_resource_error(dataset, "Failed to create dataset: ")
    try:
        dataset = check_resource(dataset, api.get_dataset)
    except ValueError, exception:
        sys.exit("Failed to get a finished dataset: %s" % str(exception))
Ejemplo n.º 4
0
def remote_predict(model,
                   test_dataset,
                   batch_prediction_args,
                   args,
                   api,
                   resume,
                   prediction_file=None,
                   session_file=None,
                   path=None,
                   log=None):
    """Computes a prediction for each entry in the `test_set`.

    Predictions are computed remotely using the batch predictions call.
    """
    if args.ensemble is not None and not args.dataset_off:
        model_or_ensemble = args.ensemble
    elif args.dataset_off:
        if hasattr(args, "ensemble_ids_") and args.ensemble_ids_:
            models = args.ensemble_ids_
        else:
            models = args.model_ids_
        test_datasets = args.test_dataset_ids
    else:
        model_or_ensemble = bigml.api.get_model_id(model)
    # if resuming, try to extract dataset form log files
    if resume:
        message = u.dated("Batch prediction not found. Resuming.\n")
        resume, batch_prediction = c.checkpoint(c.is_batch_prediction_created,
                                                path,
                                                debug=args.debug,
                                                message=message,
                                                log_file=session_file,
                                                console=args.verbosity)
    if not resume:
        if not args.dataset_off:
            batch_prediction = create_batch_prediction(
                model_or_ensemble,
                test_dataset,
                batch_prediction_args,
                args,
                api,
                session_file=session_file,
                path=path,
                log=log)
        else:
            batch_predictions = []
            for index, test_dataset_n in enumerate(test_datasets):
                batch_predictions.append(create_batch_prediction( \
                    models[index], test_dataset_n, batch_prediction_args,
                    args, api, session_file=session_file, path=path, log=log))
    if not args.no_csv and not args.dataset_off:
        file_name = api.download_batch_prediction(batch_prediction,
                                                  prediction_file)
        if file_name is None:
            sys.exit("Failed downloading CSV.")
    if args.to_dataset and not args.dataset_off:
        batch_prediction = bigml.api.check_resource(batch_prediction, api=api)
        new_dataset = bigml.api.get_dataset_id(
            batch_prediction['object']['output_dataset_resource'])
        if new_dataset is not None:
            message = u.dated("Batch prediction dataset created: %s\n" %
                              u.get_url(new_dataset))
            u.log_message(message,
                          log_file=session_file,
                          console=args.verbosity)
            u.log_created_resources("batch_prediction_dataset",
                                    path,
                                    new_dataset,
                                    mode='a')
    elif args.to_dataset and args.dataset_off:
        predictions_datasets = []
        for batch_prediction in batch_predictions:
            batch_prediction = bigml.api.check_resource(batch_prediction,
                                                        api=api)
            new_dataset = bigml.api.get_dataset_id(
                batch_prediction['object']['output_dataset_resource'])
            if new_dataset is not None:
                predictions_datasets.append(new_dataset)
                message = u.dated("Batch prediction dataset created: %s\n" %
                                  u.get_url(new_dataset))
                u.log_message(message,
                              log_file=session_file,
                              console=args.verbosity)
                u.log_created_resources("batch_prediction_dataset",
                                        path,
                                        new_dataset,
                                        mode='a')
        multi_dataset = api.create_dataset(predictions_datasets)
        log_created_resources("dataset_pred",
                              path,
                              bigml.api.get_dataset_id(multi_dataset),
                              mode='a')
        dataset_id = check_resource_error(multi_dataset,
                                          "Failed to create dataset: ")
        try:
            multi_dataset = api.check_resource(multi_dataset)
        except ValueError, exception:
            sys.exit("Failed to get a finished dataset: %s" % str(exception))
        message = dated("Predictions dataset created: %s\n" %
                        get_url(multi_dataset))
        log_message(message, log_file=session_file, console=args.verbosity)
        log_message("%s\n" % dataset_id, log_file=log)
        if not args.no_csv:
            file_name = api.download_dataset(dataset_id, prediction_file)
            if file_name is None:
                sys.exit("Failed downloading CSV.")
Ejemplo n.º 5
0
def remote_predict(model, test_dataset, batch_prediction_args, args,
                   api, resume, prediction_file=None, session_file=None,
                   path=None, log=None):
    """Computes a prediction for each entry in the `test_set`.

    Predictions are computed remotely using the batch predictions call.
    """
    if args.ensemble is not None and not args.dataset_off:
        model_or_ensemble = args.ensemble
    elif args.dataset_off:
        if hasattr(args, "ensemble_ids_") and args.ensemble_ids_:
            models = args.ensemble_ids_
        else:
            models = args.model_ids_
        test_datasets = args.test_dataset_ids
    else:
        model_or_ensemble = bigml.api.get_model_id(model)
    # if resuming, try to extract dataset form log files
    if resume:
        message = u.dated("Batch prediction not found. Resuming.\n")
        resume, batch_prediction = c.checkpoint(
            c.is_batch_prediction_created, path, debug=args.debug,
            message=message, log_file=session_file, console=args.verbosity)
    if not resume:
        if not args.dataset_off:
            batch_prediction = create_batch_prediction(
                model_or_ensemble, test_dataset, batch_prediction_args,
                args, api, session_file=session_file, path=path, log=log)
        else:
            batch_predictions = []
            for index, test_dataset_n in enumerate(test_datasets):
                batch_predictions.append(create_batch_prediction( \
                    models[index], test_dataset_n, batch_prediction_args,
                    args, api, session_file=session_file, path=path, log=log))
    if not args.no_csv and not args.dataset_off:
        file_name = api.download_batch_prediction(batch_prediction,
                                                  prediction_file)
        if file_name is None:
            sys.exit("Failed downloading CSV.")
    if args.to_dataset and not args.dataset_off:
        batch_prediction = bigml.api.check_resource(batch_prediction, api=api)
        new_dataset = bigml.api.get_dataset_id(
            batch_prediction['object']['output_dataset_resource'])
        if new_dataset is not None:
            message = u.dated("Batch prediction dataset created: %s\n"
                              % u.get_url(new_dataset))
            u.log_message(message, log_file=session_file,
                          console=args.verbosity)
            u.log_created_resources("batch_prediction_dataset",
                                    path, new_dataset, mode='a')
    elif args.to_dataset and args.dataset_off:
        predictions_datasets = []
        for batch_prediction in batch_predictions:
            batch_prediction = bigml.api.check_resource(batch_prediction,
                                                        api=api)
            new_dataset = bigml.api.get_dataset_id(
                batch_prediction['object']['output_dataset_resource'])
            if new_dataset is not None:
                predictions_datasets.append(new_dataset)
                message = u.dated("Batch prediction dataset created: %s\n"
                                  % u.get_url(new_dataset))
                u.log_message(message, log_file=session_file,
                              console=args.verbosity)
                u.log_created_resources("batch_prediction_dataset",
                                        path, new_dataset, mode='a')
        multi_dataset = api.create_dataset(predictions_datasets)
        log_created_resources("dataset_pred", path,
                              bigml.api.get_dataset_id(multi_dataset),
                              mode='a')
        dataset_id = check_resource_error(multi_dataset,
                                          "Failed to create dataset: ")
        try:
            multi_dataset = api.check_resource(multi_dataset)
        except ValueError, exception:
            sys.exit("Failed to get a finished dataset: %s" % str(exception))
        message = dated("Predictions dataset created: %s\n" %
                        get_url(multi_dataset))
        log_message(message, log_file=session_file, console=args.verbosity)
        log_message("%s\n" % dataset_id, log_file=log)
        if not args.no_csv:
            file_name = api.download_dataset(dataset_id, prediction_file)
            if file_name is None:
                sys.exit("Failed downloading CSV.")
Ejemplo n.º 6
0
def compute_output(api, args, training_set, test_set=None, output=None,
                   objective_field=None,
                   description=None,
                   field_attributes=None,
                   types=None,
                   dataset_fields=None,
                   model_fields=None,
                   name=None, training_set_header=True,
                   test_set_header=True, model_ids=None,
                   votes_files=None, resume=False, fields_map=None):
    """ Creates one or more models using the `training_set` or uses the ids
    of previously created BigML models to make predictions for the `test_set`.

    """
    source = None
    dataset = None
    model = None
    models = None
    fields = None

    path = u.check_dir(output)
    session_file = "%s%s%s" % (path, os.sep, SESSIONS_LOG)
    csv_properties = {}
    # If logging is required, open the file for logging
    log = None
    if args.log_file:
        u.check_dir(args.log_file)
        log = args.log_file
        # If --clear_logs the log files are cleared
        if args.clear_logs:
            try:
                open(log, 'w', 0).close()
            except IOError:
                pass

    if (training_set or (args.evaluate and test_set)):
        if resume:
            resume, args.source = u.checkpoint(u.is_source_created, path,
                                               bigml.api, debug=args.debug)
            if not resume:
                message = u.dated("Source not found. Resuming.\n")
                u.log_message(message, log_file=session_file,
                              console=args.verbosity)

    # If neither a previous source, dataset or model are provided.
    # we create a new one. Also if --evaluate and test data are provided
    # we create a new dataset to test with.
    data_set = None
    if (training_set and not args.source and not args.dataset and
            not args.model and not args.models):
        data_set = training_set
        data_set_header = training_set_header
    elif (args.evaluate and test_set and not args.source):
        data_set = test_set
        data_set_header = test_set_header

    if not data_set is None:

        source_args = {
            "name": name,
            "description": description,
            "category": args.category,
            "tags": args.tag,
            "source_parser": {"header": data_set_header}}
        message = u.dated("Creating source.\n")
        u.log_message(message, log_file=session_file, console=args.verbosity)
        source = api.create_source(data_set, source_args,
                                   progress_bar=args.progress_bar)
        source = api.check_resource(source, api.get_source)
        message = u.dated("Source created: %s\n" % u.get_url(source, api))
        u.log_message(message, log_file=session_file, console=args.verbosity)
        u.log_message("%s\n" % source['resource'], log_file=log)

        fields = Fields(source['object']['fields'],
                        source['object']['source_parser']['missing_tokens'],
                        source['object']['source_parser']['locale'])
        source_file = open(path + '/source', 'w', 0)
        source_file.write("%s\n" % source['resource'])
        source_file.write("%s\n" % source['object']['name'])
        source_file.flush()
        source_file.close()

    # If a source is provided, we retrieve it.
    elif args.source:
        message = u.dated("Retrieving source. %s\n" %
                          u.get_url(args.source, api))
        u.log_message(message, log_file=session_file, console=args.verbosity)
        source = api.get_source(args.source)

    # If we already have source, we check that is finished and extract the
    # fields, and update them if needed.
    if source:
        if source['object']['status']['code'] != bigml.api.FINISHED:
            message = u.dated("Retrieving source. %s\n" %
                              u.get_url(source, api))
            u.log_message(message, log_file=session_file,
                          console=args.verbosity)
            source = api.check_resource(source, api.get_source)
        csv_properties = {'missing_tokens':
                          source['object']['source_parser']['missing_tokens'],
                          'data_locale':
                          source['object']['source_parser']['locale']}

        fields = Fields(source['object']['fields'], **csv_properties)
        update_fields = {}
        if field_attributes:
            for (column, value) in field_attributes.iteritems():
                update_fields.update({
                    fields.field_id(column): value})
            message = u.dated("Updating source. %s\n" %
                              u.get_url(source, api))
            u.log_message(message, log_file=session_file,
                          console=args.verbosity)
            source = api.update_source(source, {"fields": update_fields})

        update_fields = {}
        if types:
            for (column, value) in types.iteritems():
                update_fields.update({
                    fields.field_id(column): {'optype': value}})
            message = u.dated("Updating source. %s\n" %
                              u.get_url(source, api))
            u.log_message(message, log_file=session_file,
                          console=args.verbosity)
            source = api.update_source(source, {"fields": update_fields})

    if (training_set or args.source or (args.evaluate and test_set)):
        if resume:
            resume, args.dataset = u.checkpoint(u.is_dataset_created, path,
                                                bigml.api,
                                                debug=args.debug)
            if not resume:
                message = u.dated("Dataset not found. Resuming.\n")
                u.log_message(message, log_file=session_file,
                              console=args.verbosity)
    # If we have a source but not dataset or model has been provided, we
    # create a new dataset if the no_dataset option isn't set up. Also
    # if evaluate is set and test_set has been provided.
    if ((source and not args.dataset and not args.model and not model_ids and
            not args.no_dataset) or
            (args.evaluate and args.test_set and not args.dataset)):
        dataset_args = {
            "name": name,
            "description": description,
            "category": args.category,
            "tags": args.tag
        }

        if args.json_filter:
            dataset_args.update(json_filter=args.json_filter)
        elif args.lisp_filter:
            dataset_args.update(lisp_filter=args.lisp_filter)

        input_fields = []
        if dataset_fields:
            for name in dataset_fields:
                input_fields.append(fields.field_id(name))
            dataset_args.update(input_fields=input_fields)
        message = u.dated("Creating dataset.\n")
        u.log_message(message, log_file=session_file, console=args.verbosity)
        dataset = api.create_dataset(source, dataset_args)
        dataset = api.check_resource(dataset, api.get_dataset)
        message = u.dated("Dataset created: %s\n" % u.get_url(dataset, api))
        u.log_message(message, log_file=session_file, console=args.verbosity)
        u.log_message("%s\n" % dataset['resource'], log_file=log)
        dataset_file = open(path + '/dataset', 'w', 0)
        dataset_file.write("%s\n" % dataset['resource'])
        dataset_file.flush()
        dataset_file.close()

    # If a dataset is provided, let's retrieve it.
    elif args.dataset:
        message = u.dated("Retrieving dataset. %s\n" %
                          u.get_url(args.dataset, api))
        u.log_message(message, log_file=session_file, console=args.verbosity)
        dataset = api.get_dataset(args.dataset)

    # If we already have a dataset, we check the status and get the fields if
    # we hadn't them yet.
    if dataset:
        if dataset['object']['status']['code'] != bigml.api.FINISHED:
            message = u.dated("Retrieving dataset. %s\n" %
                              u.get_url(dataset, api))
            u.log_message(message, log_file=session_file,
                          console=args.verbosity)
            dataset = api.check_resource(dataset, api.get_dataset)
        if not csv_properties:
            csv_properties = {'data_locale':
                              dataset['object']['locale']}
        if args.public_dataset:
            if not description:
                raise Exception("You should provide a description to publish.")
            public_dataset = {"private": False}
            if args.dataset_price:
                message = u.dated("Updating dataset. %s\n" %
                                  u.get_url(dataset, api))
                u.log_message(message, log_file=session_file,
                              console=args.verbosity)
                public_dataset.update(price=args.dataset_price)
            message = u.dated("Updating dataset. %s\n" %
                              u.get_url(dataset, api))
            u.log_message(message, log_file=session_file,
                          console=args.verbosity)
            dataset = api.update_dataset(dataset, public_dataset)
        fields = Fields(dataset['object']['fields'], **csv_properties)

    # If we have a dataset but not a model, we create the model if the no_model
    # flag hasn't been set up.
    if (dataset and not args.model and not model_ids and not args.no_model):
        model_args = {
            "name": name,
            "description": description,
            "category": args.category,
            "tags": args.tag
        }
        if objective_field is not None:
            model_args.update({"objective_field":
                               fields.field_id(objective_field)})
        # If evaluate flag is on, we choose a deterministic sampling with 80%
        # of the data to create the model
        if args.evaluate:
            if args.sample_rate == 1:
                args.sample_rate = EVALUATE_SAMPLE_RATE
            seed = SEED
            model_args.update(seed=seed)

        input_fields = []
        if model_fields:
            for name in model_fields:
                input_fields.append(fields.field_id(name))
            model_args.update(input_fields=input_fields)

        if args.pruning and args.pruning != 'smart':
            model_args.update(stat_pruning=(args.pruning == 'statistical'))

        model_args.update(sample_rate=args.sample_rate,
                          replacement=args.replacement,
                          randomize=args.randomize)
        model_ids = []
        models = []
        if resume:
            resume, model_ids = u.checkpoint(u.are_models_created, path,
                                             args.number_of_models,
                                             bigml.api, debug=args.debug)
            if not resume:
                message = u.dated("Found %s models out of %s. Resuming.\n" %
                                  (len(model_ids),
                                   args.number_of_models))
                u.log_message(message, log_file=session_file,
                              console=args.verbosity)
            models = model_ids
            args.number_of_models -= len(model_ids)

        model_file = open(path + '/models', 'w', 0)
        for model_id in model_ids:
            model_file.write("%s\n" % model_id)
        last_model = None
        if args.number_of_models > 0:
            message = u.dated("Creating %s.\n" %
                              u.plural("model", args.number_of_models))
            u.log_message(message, log_file=session_file,
                          console=args.verbosity)
            for i in range(1, args.number_of_models + 1):
                if i > args.max_parallel_models:
                    api.check_resource(last_model, api.get_model)
                model = api.create_model(dataset, model_args)
                u.log_message("%s\n" % model['resource'], log_file=log)
                last_model = model
                model_ids.append(model['resource'])
                models.append(model)
                model_file.write("%s\n" % model['resource'])
                model_file.flush()
            if args.number_of_models < 2 and args.verbosity:
                if model['object']['status']['code'] != bigml.api.FINISHED:
                    model = api.check_resource(model, api.get_model)
                    models[0] = model
                message = u.dated("Model created: %s.\n" %
                                  u.get_url(model, api))
                u.log_message(message, log_file=session_file,
                              console=args.verbosity)
        model_file.close()

    # If a model is provided, we retrieve it.
    elif args.model:
        message = u.dated("Retrieving model. %s\n" %
                          u.get_url(args.model, api))
        u.log_message(message, log_file=session_file, console=args.verbosity)
        model = api.get_model(args.model)

    elif args.models or args.model_tag:
        models = model_ids[:]

    if model_ids and test_set and not args.evaluate:
        model_id = ""
        if len(model_ids) == 1:
            model_id = model_ids[0]
        message = u.dated("Retrieving %s. %s\n" %
                          (u.plural("model", len(model_ids)),
                           u.get_url(model_id, api)))
        u.log_message(message, log_file=session_file, console=args.verbosity)
        if len(model_ids) < args.max_batch_models:
            models = []
            for model in model_ids:
                model = api.check_resource(model, api.get_model)
                models.append(model)
            model = models[0]
        else:
            model = api.check_resource(model_ids[0], api.get_model)
            models[0] = model

    # We check that the model is finished and get the fields if haven't got
    # them yet.
    if model and not args.evaluate and (test_set or args.black_box
                                        or args.white_box):
        if model['object']['status']['code'] != bigml.api.FINISHED:
            message = u.dated("Retrieving model. %s\n" %
                              u.get_url(model, api))
            u.log_message(message, log_file=session_file,
                          console=args.verbosity)
            model = api.check_resource(model, api.get_model)
        if args.black_box:
            if not description:
                raise Exception("You should provide a description to publish.")
            model = api.update_model(model, {"private": False})
        if args.white_box:
            if not description:
                raise Exception("You should provide a description to publish.")
            public_model = {"private": False, "white_box": True}
            if args.model_price:
                message = u.dated("Updating model. %s\n" %
                                  u.get_url(model, api))
                u.log_message(message, log_file=session_file,
                              console=args.verbosity)
                public_model.update(price=args.model_price)
            if args.cpp:
                message = u.dated("Updating model. %s\n" %
                                  u.get_url(model, api))
                u.log_message(message, log_file=session_file,
                              console=args.verbosity)
                public_model.update(credits_per_prediction=args.cpp)
            model = api.update_model(model, public_model)
        if not csv_properties:
            csv_properties = {'data_locale':
                              model['object']['locale']}
        csv_properties.update(verbose=True)
        if args.user_locale:
            csv_properties.update(data_locale=args.user_locale)

        fields = Fields(model['object']['model']['fields'], **csv_properties)

    if model and not models:
        models = [model]

    if models and test_set and not args.evaluate:
        objective_field = models[0]['object']['objective_fields']
        if isinstance(objective_field, list):
            objective_field = objective_field[0]
        predict(test_set, test_set_header, models, fields, output,
                objective_field, args.remote, api, log,
                args.max_batch_models, args.method, resume, args.tag,
                args.verbosity, session_file, args.debug)

    # When combine_votes flag is used, retrieve the predictions files saved
    # in the comma separated list of directories and combine them
    if votes_files:
        model_id = re.sub(r'.*(model_[a-f0-9]{24})__predictions\.csv$',
                          r'\1', votes_files[0]).replace("_", "/")
        model = api.check_resource(model_id, api.get_model)
        local_model = Model(model)
        message = u.dated("Combining votes.\n")
        u.log_message(message, log_file=session_file,
                      console=args.verbosity)
        u.combine_votes(votes_files, local_model.to_prediction,
                        output, args.method)

    # If evaluate flag is on, create remote evaluation and save results in
    # json and human-readable format.
    if args.evaluate:
        if resume:
            resume, evaluation = u.checkpoint(u.is_evaluation_created, path,
                                              bigml.api,
                                              debug=args.debug)
            if not resume:
                message = u.dated("Evaluation not found. Resuming.\n")
                u.log_message(message, log_file=session_file,
                              console=args.verbosity)
        if not resume:
            evaluation_file = open(path + '/evaluation', 'w', 0)
            evaluation_args = {
                "name": name,
                "description": description,
                "tags": args.tag
            }
            if not fields_map is None:
                update_map = {}
                for (dataset_column, model_column) in fields_map.iteritems():
                    update_map.update({
                        fields.field_id(dataset_column):
                        fields.field_id(model_column)})
                evaluation_args.update({"fields_map": update_map})
            if not ((args.dataset or args.test_set)
                    and (args.model or args.models or args.model_tag)):
                evaluation_args.update(out_of_bag=True, seed=SEED,
                                       sample_rate=args.sample_rate)
            message = u.dated("Creating evaluation.\n")
            u.log_message(message, log_file=session_file,
                          console=args.verbosity)
            evaluation = api.create_evaluation(model, dataset, evaluation_args)
            u.log_message("%s\n" % evaluation['resource'], log_file=log)
            evaluation_file.write("%s\n" % evaluation['resource'])
            evaluation_file.flush()
            evaluation_file.close()
        message = u.dated("Retrieving evaluation. %s\n" %
                          u.get_url(evaluation, api))
        u.log_message(message, log_file=session_file, console=args.verbosity)
        evaluation = api.check_resource(evaluation, api.get_evaluation)
        evaluation_json = open(output + '.json', 'w', 0)
        evaluation_json.write(json.dumps(evaluation['object']['result']))
        evaluation_json.flush()
        evaluation_json.close()
        evaluation_txt = open(output + '.txt', 'w', 0)
        api.pprint(evaluation['object']['result'],
                   evaluation_txt)
        evaluation_txt.flush()
        evaluation_txt.close()

    # Workaround to restore windows console cp850 encoding to print the tree
    if sys.platform == "win32" and sys.stdout.isatty():
        import locale
        data_locale = locale.getlocale()
        if not data_locale[0] is None:
            locale.setlocale(locale.LC_ALL, (data_locale[0], "850"))
        message = (u"\nGenerated files:\n\n" +
                   unicode(u.print_tree(path, " "), "utf-8") + u"\n")
    else:
        message = "\nGenerated files:\n\n" + u.print_tree(path, " ") + "\n"
    u.log_message(message, log_file=session_file, console=args.verbosity)
Ejemplo n.º 7
0
from bigml.api import BigML

api_user= os.getenv('BIGML_USERNAME')
api_key= os.getenv('BIGML_KEY')
api_project= os.getenv('BIGML_PROJECT')

api = BigML (project = api_project)

# LOAD DATA SET into BIG ML 

source_train = api.create_source('train.csv')
source_test = api.create_source('test.csv')

# DATASET CREATION

dataset_train = api.create_dataset(source_train) 
datatest_test = api.create_dataset(source_test)

# TRAIN / VAL SPLIT CREATION

trainset = api.create_dataset(dataset_train, {"name": "Train 80% ", "sample_rate": 0.8})
valset = api.create_dataset(dataset_train, {"name": "Validation 20% ", "sample_rate": 0.8, "out_of_bag": True})

# MODEL ENSEMBLE

ensemble_args = {"objective_field": "SeriousDlqin2yrs"}
ensemble = api.create_ensemble(trainset, ensemble_args)

# EVALUATION ENSEMBLE

evaluation = api.create_evaluation(ensemble, valset)