Ejemplo n.º 1
0
 def __init__(self, args, stored_command=None):
     self.stored = (args is None and
                    isinstance(stored_command, StoredCommand))
     self.args = args if not self.stored else stored_command.args
     self.resume = not self.stored and '--resume' in self.args
     self.defaults_file = (None if not self.stored else
                           os.path.join(stored_command.output_dir,
                                        DEFAULTS_FILE))
     self.user_defaults = get_user_defaults(self.defaults_file)
     self.command = (a.get_command_message(self.args) if not self.stored
                     else stored_command.command)
     self.parser, self.common_options = create_parser(
         general_defaults=self.user_defaults,
         constants={'NOW': a.NOW,
                    'MAX_MODELS': MAX_MODELS,
                    'PLURALITY': PLURALITY})
     self.flags, self.train_stdin, self.test_stdin = a.get_flags(self.args)
Ejemplo n.º 2
0
 def __init__(self, args, stored_command=None):
     self.stored = (args is None and
                    isinstance(stored_command, StoredCommand))
     self.args = args if not self.stored else stored_command.args
     self.resume = not self.stored and '--resume' in self.args
     self.defaults_file = (None if not self.stored else
                           os.path.join(stored_command.output_dir,
                                        DEFAULTS_FILE))
     self.user_defaults = get_user_defaults(self.defaults_file)
     self.command = (a.get_command_message(self.args) if not self.stored
                     else stored_command.command)
     self.parser, self.common_options = create_parser(
         general_defaults=self.user_defaults,
         constants={'NOW': a.NOW,
                    'MAX_MODELS': MAX_MODELS,
                    'PLURALITY': PLURALITY})
     self.flags, self.train_stdin, self.test_stdin = a.get_flags(self.args)
Ejemplo n.º 3
0
def main(args=sys.argv[1:]):
    """Main process

    """
    train_stdin = False
    for i in range(0, len(args)):
        if args[i].startswith("--"):
            args[i] = args[i].replace("_", "-")
            if (args[i] == '--train'
                    and (i == len(args) - 1 or args[i + 1].startswith("--"))):
                train_stdin = True

    # If --clear-logs the log files are cleared
    if "--clear-logs" in args:
        for log_file in LOG_FILES:
            try:
                open(log_file, 'w', 0).close()
            except IOError:
                pass
    literal_args = args[:]
    for i in range(0, len(args)):
        if ' ' in args[i]:
            literal_args[i] = '"%s"' % args[i]
    message = "bigmler %s\n" % " ".join(literal_args)

    # Resume calls are not logged
    if not "--resume" in args:
        with open(COMMAND_LOG, "a", 0) as command_log:
            command_log.write(message)
        resume = False

    parser = create_parser(defaults=get_user_defaults(),
                           constants={
                               'NOW': NOW,
                               'MAX_MODELS': MAX_MODELS,
                               'PLURALITY': PLURALITY
                           })

    # Parses command line arguments.
    command_args = parser.parse_args(args)

    if command_args.cross_validation_rate > 0 and (command_args.test_set
                                                   or command_args.evaluate
                                                   or command_args.model
                                                   or command_args.models
                                                   or command_args.model_tag):
        parser.error("Non compatible flags: --cross-validation-rate"
                     " cannot be used with --evaluate, --model,"
                     " --models or --model-tag. Usage:\n\n"
                     "bigmler --train data/iris.csv "
                     "--cross-validation-rate 0.1")

    default_output = ('evaluation'
                      if command_args.evaluate else 'predictions.csv')
    if command_args.resume:
        debug = command_args.debug
        command = u.get_log_reversed(COMMAND_LOG, command_args.stack_level)
        args = shlex.split(command)[1:]
        try:
            position = args.index("--train")
            if (position == (len(args) - 1)
                    or args[position + 1].startswith("--")):
                train_stdin = True
        except ValueError:
            pass
        output_dir = u.get_log_reversed(DIRS_LOG, command_args.stack_level)
        defaults_file = "%s%s%s" % (output_dir, os.sep, DEFAULTS_FILE)
        parser = create_parser(defaults=get_user_defaults(defaults_file),
                               constants={
                                   'NOW': NOW,
                                   'MAX_MODELS': MAX_MODELS,
                                   'PLURALITY': PLURALITY
                               })
        command_args = parser.parse_args(args)
        if command_args.predictions is None:
            command_args.predictions = ("%s%s%s" %
                                        (output_dir, os.sep, default_output))
        # Logs the issued command and the resumed command
        session_file = "%s%s%s" % (output_dir, os.sep, SESSIONS_LOG)
        u.log_message(message, log_file=session_file)
        message = "\nResuming command:\n%s\n\n" % command
        u.log_message(message, log_file=session_file, console=True)
        try:
            defaults_handler = open(defaults_file, 'r')
            contents = defaults_handler.read()
            message = "\nUsing the following defaults:\n%s\n\n" % contents
            u.log_message(message, log_file=session_file, console=True)
            defaults_handler.close()
        except IOError:
            pass

        resume = True
    else:
        if command_args.predictions is None:
            command_args.predictions = ("%s%s%s" %
                                        (NOW, os.sep, default_output))
        if len(os.path.dirname(command_args.predictions).strip()) == 0:
            command_args.predictions = (
                "%s%s%s" % (NOW, os.sep, command_args.predictions))
        directory = u.check_dir(command_args.predictions)
        session_file = "%s%s%s" % (directory, os.sep, SESSIONS_LOG)
        u.log_message(message + "\n", log_file=session_file)
        try:
            defaults_file = open(DEFAULTS_FILE, 'r')
            contents = defaults_file.read()
            defaults_file.close()
            defaults_copy = open("%s%s%s" % (directory, os.sep, DEFAULTS_FILE),
                                 'w', 0)
            defaults_copy.write(contents)
            defaults_copy.close()
        except IOError:
            pass
        with open(DIRS_LOG, "a", 0) as directory_log:
            directory_log.write("%s\n" % os.path.abspath(directory))

    if resume and debug:
        command_args.debug = True

    if train_stdin:
        command_args.training_set = StringIO.StringIO(sys.stdin.read())

    api_command_args = {
        'username': command_args.username,
        'api_key': command_args.api_key,
        'dev_mode': command_args.dev_mode,
        'debug': command_args.debug
    }

    if command_args.store:
        api_command_args.update({'storage': u.check_dir(session_file)})

    api = bigml.api.BigML(**api_command_args)

    if (command_args.evaluate
            and not (command_args.training_set or command_args.source
                     or command_args.dataset)
            and not (command_args.test_set and
                     (command_args.model or command_args.models
                      or command_args.model_tag or command_args.ensemble))):
        parser.error("Evaluation wrong syntax.\n"
                     "\nTry for instance:\n\nbigmler --train data/iris.csv"
                     " --evaluate\nbigmler --model "
                     "model/5081d067035d076151000011 --dataset "
                     "dataset/5081d067035d076151003423 --evaluate\n"
                     "bigmler --ensemble ensemble/5081d067035d076151003443"
                     " --evaluate")

    if command_args.objective_field:
        objective = command_args.objective_field
        try:
            command_args.objective_field = int(objective)
        except ValueError:
            pass

    output_args = {
        "api": api,
        "training_set": command_args.training_set,
        "test_set": command_args.test_set,
        "output": command_args.predictions,
        "objective_field": command_args.objective_field,
        "name": command_args.name,
        "training_set_header": command_args.train_header,
        "test_set_header": command_args.test_header,
        "args": command_args,
        "resume": resume,
    }

    # Reads description if provided.
    if command_args.description:
        description_arg = u.read_description(command_args.description)
        output_args.update(description=description_arg)
    else:
        output_args.update(description="Created using BigMLer")

    # Parses fields if provided.
    if command_args.field_attributes:
        field_attributes_arg = (u.read_field_attributes(
            command_args.field_attributes))
        output_args.update(field_attributes=field_attributes_arg)

    # Parses types if provided.
    if command_args.types:
        types_arg = u.read_types(command_args.types)
        output_args.update(types=types_arg)

    # Parses dataset fields if provided.
    if command_args.dataset_fields:
        dataset_fields_arg = map(lambda x: x.strip(),
                                 command_args.dataset_fields.split(','))
        output_args.update(dataset_fields=dataset_fields_arg)

    # Parses model input fields if provided.
    if command_args.model_fields:
        model_fields_arg = map(lambda x: x.strip(),
                               command_args.model_fields.split(','))
        output_args.update(model_fields=model_fields_arg)

    model_ids = []
    # Parses model/ids if provided.
    if command_args.models:
        model_ids = u.read_models(command_args.models)
        output_args.update(model_ids=model_ids)

    dataset_id = None
    # Parses dataset/id if provided.
    if command_args.datasets:
        dataset_id = u.read_dataset(command_args.datasets)
        command_args.dataset = dataset_id

    # Retrieve model/ids if provided.
    if command_args.model_tag:
        model_ids = (model_ids + u.list_ids(
            api.list_models, "tags__in=%s" % command_args.model_tag))
        output_args.update(model_ids=model_ids)

    # Reads a json filter if provided.
    if command_args.json_filter:
        json_filter = u.read_json_filter(command_args.json_filter)
        command_args.json_filter = json_filter

    # Reads a lisp filter if provided.
    if command_args.lisp_filter:
        lisp_filter = u.read_lisp_filter(command_args.lisp_filter)
        command_args.lisp_filter = lisp_filter

    # Adds default tags unless that it is requested not to do so.
    if command_args.no_tag:
        command_args.tag.append('BigMLer')
        command_args.tag.append('BigMLer_%s' % NOW)

    # Checks combined votes method
    if (command_args.method
            and not command_args.method in COMBINATION_WEIGHTS.keys()):
        command_args.method = 0
    else:
        combiner_methods = dict([[value, key]
                                 for key, value in COMBINER_MAP.items()])
        command_args.method = combiner_methods.get(command_args.method, 0)

    # Reads votes files in the provided directories.
    if command_args.votes_dirs:
        dirs = map(lambda x: x.strip(), command_args.votes_dirs.split(','))
        votes_path = os.path.dirname(command_args.predictions)
        votes_files = u.read_votes_files(dirs, votes_path)
        output_args.update(votes_files=votes_files)

    # Parses fields map if provided.
    if command_args.fields_map:
        fields_map_arg = u.read_fields_map(command_args.fields_map)
        output_args.update(fields_map=fields_map_arg)

    # Parses resources ids if provided.
    if command_args.delete:
        if command_args.predictions is None:
            path = NOW
        else:
            path = u.check_dir(command_args.predictions)
        session_file = "%s%s%s" % (path, os.sep, SESSIONS_LOG)
        message = u.dated("Retrieving objects to delete.\n")
        u.log_message(message,
                      log_file=session_file,
                      console=command_args.verbosity)
        delete_list = []
        if command_args.delete_list:
            delete_list = map(lambda x: x.strip(),
                              command_args.delete_list.split(','))
        if command_args.delete_file:
            if not os.path.exists(command_args.delete_file):
                raise Exception("File %s not found" % command_args.delete_file)
            delete_list.extend(
                [line for line in open(command_args.delete_file, "r")])
        if command_args.all_tag:
            query_string = "tags__in=%s" % command_args.all_tag
            delete_list.extend(u.list_ids(api.list_sources, query_string))
            delete_list.extend(u.list_ids(api.list_datasets, query_string))
            delete_list.extend(u.list_ids(api.list_models, query_string))
            delete_list.extend(u.list_ids(api.list_predictions, query_string))
            delete_list.extend(u.list_ids(api.list_evaluations, query_string))
        # Retrieve sources/ids if provided
        if command_args.source_tag:
            query_string = "tags__in=%s" % command_args.source_tag
            delete_list.extend(u.list_ids(api.list_sources, query_string))
        # Retrieve datasets/ids if provided
        if command_args.dataset_tag:
            query_string = "tags__in=%s" % command_args.dataset_tag
            delete_list.extend(u.list_ids(api.list_datasets, query_string))
        # Retrieve model/ids if provided
        if command_args.model_tag:
            query_string = "tags__in=%s" % command_args.model_tag
            delete_list.extend(u.list_ids(api.list_models, query_string))
        # Retrieve prediction/ids if provided
        if command_args.prediction_tag:
            query_string = "tags__in=%s" % command_args.prediction_tag
            delete_list.extend(u.list_ids(api.list_predictions, query_string))
        # Retrieve evaluation/ids if provided
        if command_args.evaluation_tag:
            query_string = "tags__in=%s" % command_args.evaluation_tag
            delete_list.extend(u.list_ids(api.list_evaluations, query_string))
        # Retrieve ensembles/ids if provided
        if command_args.ensemble_tag:
            query_string = "tags__in=%s" % command_args.ensemble_tag
            delete_list.extend(u.list_ids(api.list_ensembles, query_string))
        message = u.dated("Deleting objects.\n")
        u.log_message(message,
                      log_file=session_file,
                      console=command_args.verbosity)
        message = "\n".join(delete_list)
        u.log_message(message, log_file=session_file)
        u.delete(api, delete_list)
        if sys.platform == "win32" and sys.stdout.isatty():
            message = (u"\nGenerated files:\n\n" +
                       unicode(u.print_tree(path, " "), "utf-8") + u"\n")
        else:
            message = "\nGenerated files:\n\n" + u.print_tree(path, " ") + "\n"
        u.log_message(message,
                      log_file=session_file,
                      console=command_args.verbosity)
    elif (command_args.training_set or command_args.test_set
          or command_args.source or command_args.dataset
          or command_args.datasets or command_args.votes_dirs):
        compute_output(**output_args)
    u.log_message("_" * 80 + "\n", log_file=session_file)
Ejemplo n.º 4
0
def main(args=sys.argv[1:]):
    """Main process

    """
    (flags, train_stdin, test_stdin) = a.get_flags(args)

    # If --clear-logs the log files are cleared
    if "--clear-logs" in args:
        for log_file in LOG_FILES:
            try:
                open(log_file, 'w', 0).close()
            except IOError:
                pass
    message = a.get_command_message(args)

    # Resume calls are not logged
    if not "--resume" in args:
        with open(COMMAND_LOG, "a", 0) as command_log:
            command_log.write(message)
        resume = False
    user_defaults = get_user_defaults()
    parser = create_parser(defaults=get_user_defaults(),
                           constants={'NOW': a.NOW,
                                      'MAX_MODELS': MAX_MODELS,
                                      'PLURALITY': PLURALITY})
    # Parses command line arguments.
    command_args = a.parse_and_check(parser, args, train_stdin, test_stdin)

    default_output = ('evaluation' if command_args.evaluate
                      else 'predictions.csv')
    if command_args.resume:
        # Restore the args of the call to resume from the command log file
        debug = command_args.debug
        command = u.get_log_reversed(COMMAND_LOG,
                                     command_args.stack_level)
        args = shlex.split(command)[1:]
        try:
            position = args.index("--train")
            train_stdin = (position == (len(args) - 1) or
                           args[position + 1].startswith("--"))
        except ValueError:
            pass
        try:
            position = args.index("--test")
            test_stdin = (position == (len(args) - 1) or
                          args[position + 1].startswith("--"))
        except ValueError:
            pass
        output_dir = u.get_log_reversed(DIRS_LOG,
                                        command_args.stack_level)
        defaults_file = "%s%s%s" % (output_dir, os.sep, DEFAULTS_FILE)
        user_defaults = get_user_defaults(defaults_file)
        parser = create_parser(defaults=user_defaults,
                               constants={'NOW': a.NOW,
                                          'MAX_MODELS': MAX_MODELS,
                                          'PLURALITY': PLURALITY})
        # Parses resumed arguments.
        command_args = a.parse_and_check(parser, args, train_stdin, test_stdin)
        if command_args.predictions is None:
            command_args.predictions = ("%s%s%s" %
                                        (output_dir, os.sep,
                                         default_output))

        # Logs the issued command and the resumed command
        session_file = "%s%s%s" % (output_dir, os.sep, SESSIONS_LOG)
        u.log_message(message, log_file=session_file)
        message = "\nResuming command:\n%s\n\n" % command
        u.log_message(message, log_file=session_file, console=True)
        try:
            defaults_handler = open(defaults_file, 'r')
            contents = defaults_handler.read()
            message = "\nUsing the following defaults:\n%s\n\n" % contents
            u.log_message(message, log_file=session_file, console=True)
            defaults_handler.close()
        except IOError:
            pass

        resume = True
    else:
        if command_args.output_dir is None:
            command_args.output_dir = a.NOW
        if command_args.predictions is None:
            command_args.predictions = ("%s%s%s" %
                                        (command_args.output_dir, os.sep,
                                         default_output))
        if len(os.path.dirname(command_args.predictions).strip()) == 0:
            command_args.predictions = ("%s%s%s" %
                                        (command_args.output_dir, os.sep,
                                         command_args.predictions))
        directory = u.check_dir(command_args.predictions)
        session_file = "%s%s%s" % (directory, os.sep, SESSIONS_LOG)
        u.log_message(message + "\n", log_file=session_file)
        try:
            defaults_file = open(DEFAULTS_FILE, 'r')
            contents = defaults_file.read()
            defaults_file.close()
            defaults_copy = open("%s%s%s" % (directory, os.sep, DEFAULTS_FILE),
                                 'w', 0)
            defaults_copy.write(contents)
            defaults_copy.close()
        except IOError:
            pass
        with open(DIRS_LOG, "a", 0) as directory_log:
            directory_log.write("%s\n" % os.path.abspath(directory))

    # Creates the corresponding api instance
    if resume and debug:
        command_args.debug = True
    api = a.get_api_instance(command_args, u.check_dir(session_file))

    # Selects the action to perform: delete or create resources
    if command_args.delete:
        delete_resources(command_args, api)
    elif (command_args.training_set or has_test(command_args)
          or command_args.source or command_args.dataset
          or command_args.datasets or command_args.votes_dirs):
        output_args = a.get_output_args(api, train_stdin, test_stdin,
                                        command_args, resume)
        a.transform_args(command_args, flags, api, user_defaults)
        compute_output(**output_args)
    u.log_message("_" * 80 + "\n", log_file=session_file)
Ejemplo n.º 5
0
def main(args=sys.argv[1:]):
    """Main process

    """
    (flags, train_stdin, test_stdin) = a.get_flags(args)

    # If --clear-logs the log files are cleared
    if "--clear-logs" in args:
        for log_file in LOG_FILES:
            try:
                open(log_file, 'w', 0).close()
            except IOError:
                pass
    message = a.get_command_message(args)

    # Resume calls are not logged
    if not "--resume" in args:
        with open(COMMAND_LOG, "a", 0) as command_log:
            command_log.write(message)
        resume = False
    user_defaults = get_user_defaults()
    parser = create_parser(defaults=get_user_defaults(),
                           constants={
                               'NOW': a.NOW,
                               'MAX_MODELS': MAX_MODELS,
                               'PLURALITY': PLURALITY
                           })
    # Parses command line arguments.
    command_args = a.parse_and_check(parser, args, train_stdin, test_stdin)

    default_output = ('evaluation'
                      if command_args.evaluate else 'predictions.csv')
    if command_args.resume:
        # Restore the args of the call to resume from the command log file
        debug = command_args.debug
        command = u.get_log_reversed(COMMAND_LOG, command_args.stack_level)
        args = shlex.split(command)[1:]
        try:
            position = args.index("--train")
            train_stdin = (position == (len(args) - 1)
                           or args[position + 1].startswith("--"))
        except ValueError:
            pass
        try:
            position = args.index("--test")
            test_stdin = (position == (len(args) - 1)
                          or args[position + 1].startswith("--"))
        except ValueError:
            pass
        output_dir = u.get_log_reversed(DIRS_LOG, command_args.stack_level)
        defaults_file = "%s%s%s" % (output_dir, os.sep, DEFAULTS_FILE)
        user_defaults = get_user_defaults(defaults_file)
        parser = create_parser(defaults=user_defaults,
                               constants={
                                   'NOW': a.NOW,
                                   'MAX_MODELS': MAX_MODELS,
                                   'PLURALITY': PLURALITY
                               })
        # Parses resumed arguments.
        command_args = a.parse_and_check(parser, args, train_stdin, test_stdin)
        if command_args.predictions is None:
            command_args.predictions = ("%s%s%s" %
                                        (output_dir, os.sep, default_output))

        # Logs the issued command and the resumed command
        session_file = "%s%s%s" % (output_dir, os.sep, SESSIONS_LOG)
        u.log_message(message, log_file=session_file)
        message = "\nResuming command:\n%s\n\n" % command
        u.log_message(message, log_file=session_file, console=True)
        try:
            defaults_handler = open(defaults_file, 'r')
            contents = defaults_handler.read()
            message = "\nUsing the following defaults:\n%s\n\n" % contents
            u.log_message(message, log_file=session_file, console=True)
            defaults_handler.close()
        except IOError:
            pass

        resume = True
    else:
        if command_args.output_dir is None:
            command_args.output_dir = a.NOW
        if command_args.predictions is None:
            command_args.predictions = (
                "%s%s%s" % (command_args.output_dir, os.sep, default_output))
        if len(os.path.dirname(command_args.predictions).strip()) == 0:
            command_args.predictions = (
                "%s%s%s" %
                (command_args.output_dir, os.sep, command_args.predictions))
        directory = u.check_dir(command_args.predictions)
        session_file = "%s%s%s" % (directory, os.sep, SESSIONS_LOG)
        u.log_message(message + "\n", log_file=session_file)
        try:
            defaults_file = open(DEFAULTS_FILE, 'r')
            contents = defaults_file.read()
            defaults_file.close()
            defaults_copy = open("%s%s%s" % (directory, os.sep, DEFAULTS_FILE),
                                 'w', 0)
            defaults_copy.write(contents)
            defaults_copy.close()
        except IOError:
            pass
        with open(DIRS_LOG, "a", 0) as directory_log:
            directory_log.write("%s\n" % os.path.abspath(directory))

    # Creates the corresponding api instance
    if resume and debug:
        command_args.debug = True
    api = a.get_api_instance(command_args, u.check_dir(session_file))

    # Selects the action to perform: delete or create resources
    if command_args.delete:
        delete_resources(command_args, api)
    elif (command_args.training_set or has_test(command_args)
          or command_args.source or command_args.dataset
          or command_args.datasets or command_args.votes_dirs):
        output_args = a.get_output_args(api, train_stdin, test_stdin,
                                        command_args, resume)
        a.transform_args(command_args, flags, api, user_defaults)
        compute_output(**output_args)
    u.log_message("_" * 80 + "\n", log_file=session_file)
Ejemplo n.º 6
0
def main(args=sys.argv[1:]):
    """Main process

    """
    for i in range(0, len(args)):
        if args[i].startswith("--"):
            args[i] = args[i].replace("_", "-")
    # If --clear-logs the log files are cleared
    if "--clear-logs" in args:
        for log_file in LOG_FILES:
            try:
                open(log_file, 'w', 0).close()
            except IOError:
                pass
    literal_args = args[:]
    for i in range(0, len(args)):
        if ' ' in args[i]:
            literal_args[i] = '"%s"' % args[i]
    message = "bigmler %s\n" % " ".join(literal_args)

    # Resume calls are not logged
    if not "--resume" in args:
        with open(COMMAND_LOG, "a", 0) as command_log:
            command_log.write(message)
        resume = False

    parser = create_parser(defaults=get_user_defaults(), constants={'NOW': NOW,
                           'MAX_MODELS': MAX_MODELS, 'PLURALITY': PLURALITY})

    # Parses command line arguments.
    command_args = parser.parse_args(args)

    default_output = ('evaluation' if command_args.evaluate
                      else 'predictions.csv')
    if command_args.resume:
        debug = command_args.debug
        command = u.get_log_reversed(COMMAND_LOG,
                                     command_args.stack_level)
        args = shlex.split(command)[1:]
        output_dir = u.get_log_reversed(DIRS_LOG,
                                        command_args.stack_level)
        defaults_file = "%s%s%s" % (output_dir, os.sep, DEFAULTS_FILE)
        parser = create_parser(defaults=get_user_defaults(defaults_file),
                               constants={'NOW': NOW, 'MAX_MODELS': MAX_MODELS,
                                          'PLURALITY': PLURALITY})
        command_args = parser.parse_args(args)
        if command_args.predictions is None:
            command_args.predictions = ("%s%s%s" %
                                        (output_dir, os.sep,
                                         default_output))
        # Logs the issued command and the resumed command
        session_file = "%s%s%s" % (output_dir, os.sep, SESSIONS_LOG)
        u.log_message(message, log_file=session_file)
        message = "\nResuming command:\n%s\n\n" % command
        u.log_message(message, log_file=session_file, console=True)
        try:
            defaults_handler = open(defaults_file, 'r')
            contents = defaults_handler.read()
            message = "\nUsing the following defaults:\n%s\n\n" % contents
            u.log_message(message, log_file=session_file, console=True)
            defaults_handler.close()
        except IOError:
            pass

        resume = True
    else:
        if command_args.predictions is None:
            command_args.predictions = ("%s%s%s" %
                                        (NOW, os.sep,
                                         default_output))
        if len(os.path.dirname(command_args.predictions).strip()) == 0:
            command_args.predictions = ("%s%s%s" %
                                        (NOW, os.sep,
                                         command_args.predictions))
        directory = u.check_dir(command_args.predictions)
        session_file = "%s%s%s" % (directory, os.sep, SESSIONS_LOG)
        u.log_message(message + "\n", log_file=session_file)
        try:
            defaults_file = open(DEFAULTS_FILE, 'r')
            contents = defaults_file.read()
            defaults_file.close()
            defaults_copy = open("%s%s%s" % (directory, os.sep, DEFAULTS_FILE),
                                 'w', 0)
            defaults_copy.write(contents)
            defaults_copy.close()
        except IOError:
            pass
        with open(DIRS_LOG, "a", 0) as directory_log:
            directory_log.write("%s\n" % os.path.abspath(directory))

    if resume and debug:
        command_args.debug = True

    api_command_args = {
        'username': command_args.username,
        'api_key': command_args.api_key,
        'dev_mode': command_args.dev_mode,
        'debug': command_args.debug}

    api = bigml.api.BigML(**api_command_args)

    if (command_args.evaluate
        and not (command_args.training_set or command_args.source
                 or command_args.dataset)
        and not (command_args.test_set and (command_args.model or
                 command_args.models or command_args.model_tag))):
        parser.error("Evaluation wrong syntax.\n"
                     "\nTry for instance:\n\nbigmler --train data/iris.csv"
                     " --evaluate\nbigmler --model "
                     "model/5081d067035d076151000011 --dataset "
                     "dataset/5081d067035d076151003423 --evaluate")

    if command_args.objective_field:
        objective = command_args.objective_field
        try:
            command_args.objective_field = int(objective)
        except ValueError:
            pass

    output_args = {
        "api": api,
        "training_set": command_args.training_set,
        "test_set": command_args.test_set,
        "output": command_args.predictions,
        "objective_field": command_args.objective_field,
        "name": command_args.name,
        "training_set_header": command_args.train_header,
        "test_set_header": command_args.test_header,
        "args": command_args,
        "resume": resume,
    }

    # Reads description if provided.
    if command_args.description:
        description_arg = u.read_description(command_args.description)
        output_args.update(description=description_arg)
    else:
        output_args.update(description="Created using BigMLer")

    # Parses fields if provided.
    if command_args.field_attributes:
        field_attributes_arg = (
            u.read_field_attributes(command_args.field_attributes))
        output_args.update(field_attributes=field_attributes_arg)

    # Parses types if provided.
    if command_args.types:
        types_arg = u.read_types(command_args.types)
        output_args.update(types=types_arg)

    # Parses dataset fields if provided.
    if command_args.dataset_fields:
        dataset_fields_arg = map(lambda x: x.strip(),
                                 command_args.dataset_fields.split(','))
        output_args.update(dataset_fields=dataset_fields_arg)

    # Parses model input fields if provided.
    if command_args.model_fields:
        model_fields_arg = map(lambda x: x.strip(),
                               command_args.model_fields.split(','))
        output_args.update(model_fields=model_fields_arg)

    model_ids = []
    # Parses model/ids if provided.
    if command_args.models:
        model_ids = u.read_models(command_args.models)
        output_args.update(model_ids=model_ids)

    dataset_id = None
    # Parses dataset/id if provided.
    if command_args.datasets:
        dataset_id = u.read_dataset(command_args.datasets)
        command_args.dataset = dataset_id

    # Retrieve model/ids if provided.
    if command_args.model_tag:
        model_ids = (model_ids +
                     u.list_ids(api.list_models,
                                "tags__in=%s" % command_args.model_tag))
        output_args.update(model_ids=model_ids)

    # Reads a json filter if provided.
    if command_args.json_filter:
        json_filter = u.read_json_filter(command_args.json_filter)
        command_args.json_filter = json_filter

    # Reads a lisp filter if provided.
    if command_args.lisp_filter:
        lisp_filter = u.read_lisp_filter(command_args.lisp_filter)
        command_args.lisp_filter = lisp_filter

    # Adds default tags unless that it is requested not to do so.
    if command_args.no_tag:
        command_args.tag.append('BigMLer')
        command_args.tag.append('BigMLer_%s' % NOW)

    # Checks combined votes method
    if (command_args.method and
            not command_args.method in COMBINATION_WEIGHTS.keys()):
        command_args.method = 0
    else:
        combiner_methods = dict([[value, key]
                                for key, value in COMBINER_MAP.items()])
        command_args.method = combiner_methods.get(command_args.method, 0)

    # Reads votes files in the provided directories.
    if command_args.votes_dirs:
        dirs = map(lambda x: x.strip(), command_args.votes_dirs.split(','))
        votes_path = os.path.dirname(command_args.predictions)
        votes_files = u.read_votes_files(dirs, votes_path)
        output_args.update(votes_files=votes_files)

    # Parses fields map if provided.
    if command_args.fields_map:
        fields_map_arg = u.read_fields_map(command_args.fields_map)
        output_args.update(fields_map=fields_map_arg)

    # Parses resources ids if provided.
    if command_args.delete:
        if command_args.predictions is None:
            path = NOW
        else:
            path = u.check_dir(command_args.predictions)
        session_file = "%s%s%s" % (path, os.sep, SESSIONS_LOG)
        message = u.dated("Retrieving objects to delete.\n")
        u.log_message(message, log_file=session_file,
                      console=command_args.verbosity)
        delete_list = []
        if command_args.delete_list:
            delete_list = map(lambda x: x.strip(),
                              command_args.delete_list.split(','))
        if command_args.delete_file:
            if not os.path.exists(command_args.delete_file):
                raise Exception("File %s not found" % command_args.delete_file)
            delete_list.extend([line for line
                                in open(command_args.delete_file, "r")])
        if command_args.all_tag:
            query_string = "tags__in=%s" % command_args.all_tag
            delete_list.extend(u.list_ids(api.list_sources, query_string))
            delete_list.extend(u.list_ids(api.list_datasets, query_string))
            delete_list.extend(u.list_ids(api.list_models, query_string))
            delete_list.extend(u.list_ids(api.list_predictions, query_string))
            delete_list.extend(u.list_ids(api.list_evaluations, query_string))
        # Retrieve sources/ids if provided
        if command_args.source_tag:
            query_string = "tags__in=%s" % command_args.source_tag
            delete_list.extend(u.list_ids(api.list_sources, query_string))
        # Retrieve datasets/ids if provided
        if command_args.dataset_tag:
            query_string = "tags__in=%s" % command_args.dataset_tag
            delete_list.extend(u.list_ids(api.list_datasets, query_string))
        # Retrieve model/ids if provided
        if command_args.model_tag:
            query_string = "tags__in=%s" % command_args.model_tag
            delete_list.extend(u.list_ids(api.list_models, query_string))
        # Retrieve prediction/ids if provided
        if command_args.prediction_tag:
            query_string = "tags__in=%s" % command_args.prediction_tag
            delete_list.extend(u.list_ids(api.list_predictions, query_string))
        # Retrieve evaluation/ids if provided
        if command_args.evaluation_tag:
            query_string = "tags__in=%s" % command_args.evaluation_tag
            delete_list.extend(u.list_ids(api.list_evaluations, query_string))
        message = u.dated("Deleting objects.\n")
        u.log_message(message, log_file=session_file,
                      console=command_args.verbosity)
        message = "\n".join(delete_list)
        u.log_message(message, log_file=session_file)
        u.delete(api, delete_list)
        if sys.platform == "win32" and sys.stdout.isatty():
            message = (u"\nGenerated files:\n\n" +
                       unicode(u.print_tree(path, " "), "utf-8") + u"\n")
        else:
            message = "\nGenerated files:\n\n" + u.print_tree(path, " ") + "\n"
        u.log_message(message, log_file=session_file,
                      console=command_args.verbosity)
    elif (command_args.training_set or command_args.test_set
          or command_args.source or command_args.dataset
          or command_args.datasets or command_args.votes_dirs):
        compute_output(**output_args)
    u.log_message("_" * 80 + "\n", log_file=session_file)
Ejemplo n.º 7
0
def main(args=sys.argv[1:]):
    """Main process

    """
    train_stdin = False
    test_stdin = False
    flags = []
    for i in range(0, len(args)):
        if args[i].startswith("--"):
            flag = args[i]
            # syntax --flag=value
            if "=" in flag:
                flag = args[i][0: flag.index("=")]
            flag = flag.replace("_", "-")
            flags.append(flag)
            if (flag == '--train' and
                    (i == len(args) - 1 or args[i + 1].startswith("--"))):
                train_stdin = True
            elif (flag == '--test' and
                    (i == len(args) - 1 or args[i + 1].startswith("--"))):
                test_stdin = True

    # If --clear-logs the log files are cleared
    if "--clear-logs" in args:
        for log_file in LOG_FILES:
            try:
                open(log_file, 'w', 0).close()
            except IOError:
                pass
    literal_args = args[:]
    for i in range(0, len(args)):
        # quoting literals with blanks: 'petal length'
        if ' ' in args[i]:
            prefix = ""
            literal = args[i]
            # literals with blanks after "+" or "-": +'petal length'
            if args[i][0] in r.ADD_REMOVE_PREFIX:
                prefix = args[i][0]
                literal = args[i][1:]
            literal_args[i] = '%s"%s"' % (prefix, literal)
    message = "bigmler %s\n" % " ".join(literal_args)

    # Resume calls are not logged
    if not "--resume" in args:
        with open(COMMAND_LOG, "a", 0) as command_log:
            command_log.write(message)
        resume = False
    user_defaults = get_user_defaults()
    parser = create_parser(defaults=get_user_defaults(),
                           constants={'NOW': NOW,
                           'MAX_MODELS': MAX_MODELS, 'PLURALITY': PLURALITY})

    # Parses command line arguments.
    command_args = parser.parse_args(args)

    if command_args.cross_validation_rate > 0 and (
            non_compatible(command_args, '--cross-validation-rate')):
        parser.error("Non compatible flags: --cross-validation-rate"
                     " cannot be used with --evaluate, --model,"
                     " --models or --model-tag. Usage:\n\n"
                     "bigmler --train data/iris.csv "
                     "--cross-validation-rate 0.1")

    if train_stdin and command_args.multi_label:
        parser.error("Reading multi-label training sets from stream "
                     "is not yet available.")

    if test_stdin and command_args.resume:
        parser.error("Can't resume when using stream reading test sets.")

    default_output = ('evaluation' if command_args.evaluate
                      else 'predictions.csv')
    if command_args.resume:
        debug = command_args.debug
        command = u.get_log_reversed(COMMAND_LOG,
                                     command_args.stack_level)
        args = shlex.split(command)[1:]
        try:
            position = args.index("--train")
            train_stdin = (position == (len(args) - 1) or
                           args[position + 1].startswith("--"))
        except ValueError:
            pass
        try:
            position = args.index("--test")
            test_stdin = (position == (len(args) - 1) or
                          args[position + 1].startswith("--"))
        except ValueError:
            pass
        output_dir = u.get_log_reversed(DIRS_LOG,
                                        command_args.stack_level)
        defaults_file = "%s%s%s" % (output_dir, os.sep, DEFAULTS_FILE)
        user_defaults = get_user_defaults(defaults_file)
        parser = create_parser(defaults=user_defaults,
                               constants={'NOW': NOW,
                                          'MAX_MODELS': MAX_MODELS,
                                          'PLURALITY': PLURALITY})
        command_args = parser.parse_args(args)
        if command_args.predictions is None:
            command_args.predictions = ("%s%s%s" %
                                        (output_dir, os.sep,
                                         default_output))
        # Logs the issued command and the resumed command
        session_file = "%s%s%s" % (output_dir, os.sep, SESSIONS_LOG)
        u.log_message(message, log_file=session_file)
        message = "\nResuming command:\n%s\n\n" % command
        u.log_message(message, log_file=session_file, console=True)
        try:
            defaults_handler = open(defaults_file, 'r')
            contents = defaults_handler.read()
            message = "\nUsing the following defaults:\n%s\n\n" % contents
            u.log_message(message, log_file=session_file, console=True)
            defaults_handler.close()
        except IOError:
            pass

        resume = True
    else:
        if command_args.predictions is None:
            command_args.predictions = ("%s%s%s" %
                                        (NOW, os.sep,
                                         default_output))
        if len(os.path.dirname(command_args.predictions).strip()) == 0:
            command_args.predictions = ("%s%s%s" %
                                        (NOW, os.sep,
                                         command_args.predictions))
        directory = u.check_dir(command_args.predictions)
        session_file = "%s%s%s" % (directory, os.sep, SESSIONS_LOG)
        u.log_message(message + "\n", log_file=session_file)
        try:
            defaults_file = open(DEFAULTS_FILE, 'r')
            contents = defaults_file.read()
            defaults_file.close()
            defaults_copy = open("%s%s%s" % (directory, os.sep, DEFAULTS_FILE),
                                 'w', 0)
            defaults_copy.write(contents)
            defaults_copy.close()
        except IOError:
            pass
        with open(DIRS_LOG, "a", 0) as directory_log:
            directory_log.write("%s\n" % os.path.abspath(directory))

    if resume and debug:
        command_args.debug = True

    if train_stdin:
        if test_stdin:
            sys.exit("The standard input can't be used both for training and"
                     " testing. Choose one of them")
        command_args.training_set = StringIO.StringIO(sys.stdin.read())
    elif test_stdin:
        command_args.test_set = StringIO.StringIO(sys.stdin.read())

    api_command_args = {
        'username': command_args.username,
        'api_key': command_args.api_key,
        'dev_mode': command_args.dev_mode,
        'debug': command_args.debug}

    if command_args.store:
        api_command_args.update({'storage': u.check_dir(session_file)})

    api = bigml.api.BigML(**api_command_args)

    if (command_args.evaluate
        and not (command_args.training_set or command_args.source
                 or command_args.dataset)
        and not ((command_args.test_set or command_args.test_split) and
                 (command_args.model or
                  command_args.models or command_args.model_tag or
                  command_args.ensemble or command_args.ensembles or
                  command_args.ensemble_tag))):
        parser.error("Evaluation wrong syntax.\n"
                     "\nTry for instance:\n\nbigmler --train data/iris.csv"
                     " --evaluate\nbigmler --model "
                     "model/5081d067035d076151000011 --dataset "
                     "dataset/5081d067035d076151003423 --evaluate\n"
                     "bigmler --ensemble ensemble/5081d067035d076151003443"
                     " --dataset "
                     "dataset/5081d067035d076151003423 --evaluate")

    if command_args.objective_field:
        objective = command_args.objective_field
        try:
            command_args.objective_field = int(objective)
        except ValueError:
            if not command_args.train_header:
                sys.exit("The %s has been set as objective field but"
                         " the file has not been marked as containing"
                         " headers.\nPlease set the --train-header flag if"
                         " the file has headers or use a column number"
                         " to set the objective field." % objective)

    output_args = {
        "api": api,
        "training_set": command_args.training_set,
        "test_set": command_args.test_set,
        "output": command_args.predictions,
        "objective_field": command_args.objective_field,
        "name": command_args.name,
        "training_set_header": command_args.train_header,
        "test_set_header": command_args.test_header,
        "args": command_args,
        "resume": resume,
    }

    # Reads description if provided.
    if command_args.description:
        description_arg = u.read_description(command_args.description)
        output_args.update(description=description_arg)
    else:
        output_args.update(description="Created using BigMLer")

    # Parses fields if provided.
    if command_args.field_attributes:
        field_attributes_arg = (
            u.read_field_attributes(command_args.field_attributes))
        output_args.update(field_attributes=field_attributes_arg)

    # Parses types if provided.
    if command_args.types:
        types_arg = u.read_types(command_args.types)
        output_args.update(types=types_arg)

    # Parses dataset fields if provided.
    if command_args.dataset_fields:
        dataset_fields_arg = map(str.strip,
                                 command_args.dataset_fields.split(','))
        output_args.update(dataset_fields=dataset_fields_arg)

    # Parses model input fields if provided.
    if command_args.model_fields:
        model_fields_arg = map(str.strip,
                               command_args.model_fields.split(','))
        output_args.update(model_fields=model_fields_arg)

    model_ids = []
    # Parses model/ids if provided.
    if command_args.models:
        model_ids = u.read_resources(command_args.models)
        output_args.update(model_ids=model_ids)

    dataset_id = None
    # Parses dataset/id if provided.
    if command_args.datasets:
        dataset_id = u.read_dataset(command_args.datasets)
        command_args.dataset = dataset_id

    # Retrieve model/ids if provided.
    if command_args.model_tag:
        model_ids = (model_ids +
                     u.list_ids(api.list_models,
                                "tags__in=%s" % command_args.model_tag))
        output_args.update(model_ids=model_ids)

    # Reads a json filter if provided.
    if command_args.json_filter:
        json_filter = u.read_json_filter(command_args.json_filter)
        command_args.json_filter = json_filter

    # Reads a lisp filter if provided.
    if command_args.lisp_filter:
        lisp_filter = u.read_lisp_filter(command_args.lisp_filter)
        command_args.lisp_filter = lisp_filter

    # Adds default tags unless that it is requested not to do so.
    if command_args.no_tag:
        command_args.tag.append('BigMLer')
        command_args.tag.append('BigMLer_%s' % NOW)

    # Checks combined votes method
    if (command_args.method and
            not command_args.method in COMBINATION_WEIGHTS.keys()):
        command_args.method = 0
    else:
        combiner_methods = dict([[value, key]
                                for key, value in COMBINER_MAP.items()])
        command_args.method = combiner_methods.get(command_args.method, 0)

    # Adds replacement=True if creating ensemble and nothing is specified
    if (command_args.number_of_models > 1 and
            not command_args.replacement and
            not '--no-replacement' in flags and
            not 'replacement' in user_defaults and
            not '--no-randomize' in flags and
            not 'randomize' in user_defaults and
            not '--sample-rate' in flags and
            not 'sample_rate' in user_defaults):
        command_args.replacement = True

    # Reads votes files in the provided directories.
    if command_args.votes_dirs:
        dirs = map(str.strip, command_args.votes_dirs.split(','))
        votes_path = os.path.dirname(command_args.predictions)
        votes_files = u.read_votes_files(dirs, votes_path)
        output_args.update(votes_files=votes_files)

    # Parses fields map if provided.
    if command_args.fields_map:
        fields_map_arg = u.read_fields_map(command_args.fields_map)
        output_args.update(fields_map=fields_map_arg)

    # Old value for --prediction-info='full data' maps to 'full'
    if command_args.prediction_info == 'full data':
        print "WARNING: 'full data' is a deprecated value. Use 'full' instead"
        command_args.prediction_info = FULL_FORMAT

    # Parses resources ids if provided.
    if command_args.delete:
        if command_args.predictions is None:
            path = NOW
        else:
            path = u.check_dir(command_args.predictions)
        session_file = "%s%s%s" % (path, os.sep, SESSIONS_LOG)
        message = u.dated("Retrieving objects to delete.\n")
        u.log_message(message, log_file=session_file,
                      console=command_args.verbosity)
        delete_list = []
        if command_args.delete_list:
            delete_list = map(str.strip,
                              command_args.delete_list.split(','))
        if command_args.delete_file:
            if not os.path.exists(command_args.delete_file):
                sys.exit("File %s not found" % command_args.delete_file)
            delete_list.extend([line for line
                                in open(command_args.delete_file, "r")])
        if command_args.all_tag:
            query_string = "tags__in=%s" % command_args.all_tag
            delete_list.extend(u.list_ids(api.list_sources, query_string))
            delete_list.extend(u.list_ids(api.list_datasets, query_string))
            delete_list.extend(u.list_ids(api.list_models, query_string))
            delete_list.extend(u.list_ids(api.list_predictions, query_string))
            delete_list.extend(u.list_ids(api.list_evaluations, query_string))
        # Retrieve sources/ids if provided
        if command_args.source_tag:
            query_string = "tags__in=%s" % command_args.source_tag
            delete_list.extend(u.list_ids(api.list_sources, query_string))
        # Retrieve datasets/ids if provided
        if command_args.dataset_tag:
            query_string = "tags__in=%s" % command_args.dataset_tag
            delete_list.extend(u.list_ids(api.list_datasets, query_string))
        # Retrieve model/ids if provided
        if command_args.model_tag:
            query_string = "tags__in=%s" % command_args.model_tag
            delete_list.extend(u.list_ids(api.list_models, query_string))
        # Retrieve prediction/ids if provided
        if command_args.prediction_tag:
            query_string = "tags__in=%s" % command_args.prediction_tag
            delete_list.extend(u.list_ids(api.list_predictions, query_string))
        # Retrieve evaluation/ids if provided
        if command_args.evaluation_tag:
            query_string = "tags__in=%s" % command_args.evaluation_tag
            delete_list.extend(u.list_ids(api.list_evaluations, query_string))
        # Retrieve ensembles/ids if provided
        if command_args.ensemble_tag:
            query_string = "tags__in=%s" % command_args.ensemble_tag
            delete_list.extend(u.list_ids(api.list_ensembles, query_string))
        message = u.dated("Deleting objects.\n")
        u.log_message(message, log_file=session_file,
                      console=command_args.verbosity)
        message = "\n".join(delete_list)
        u.log_message(message, log_file=session_file)
        u.delete(api, delete_list)
        if sys.platform == "win32" and sys.stdout.isatty():
            message = (u"\nGenerated files:\n\n" +
                       unicode(u.print_tree(path, " "), "utf-8") + u"\n")
        else:
            message = "\nGenerated files:\n\n" + u.print_tree(path, " ") + "\n"
        u.log_message(message, log_file=session_file,
                      console=command_args.verbosity)
    elif (command_args.training_set or command_args.test_set
          or command_args.source or command_args.dataset
          or command_args.datasets or command_args.votes_dirs):
        compute_output(**output_args)
    u.log_message("_" * 80 + "\n", log_file=session_file)