Ejemplo n.º 1
0
def check_dataset_update(args, dataset):
    """Checks if the dataset information must be updated.

    """
    return (args.dataset_attributes or args.import_fields
            or (args.shared_flag and shared_changed(args.shared, dataset)) or
            (((hasattr(args, 'max_categories') and args.max_categories > 0) or
              (hasattr(args, 'multi_label') and args.multi_label))
             and args.objective_field))
Ejemplo n.º 2
0
def evaluate(time_series_set, datasets, api, args, resume,
             session_file=None, path=None, log=None,
             fields=None, dataset_fields=None):
    """Evaluates a list of time-series with the given dataset

    """
    output = args.predictions
    evaluations, resume = evaluations_process(
        time_series_set, datasets, fields,
        dataset_fields, api, args, resume,
        session_file=session_file, path=path, log=log)
    for evaluation in evaluations:
        evaluation = r.get_evaluation(evaluation, api, args.verbosity,
                                      session_file)
        if shared_changed(args.shared, evaluation):
            evaluation_args = {"shared": args.shared}
            evaluation = r.update_evaluation(evaluation, evaluation_args,
                                             args, api=api, path=path,
                                             session_file=session_file)
        file_name = output
        r.save_evaluation(evaluation, file_name, api)
    return resume
Ejemplo n.º 3
0
def compute_output(api, args):
    """ Creates one or more models using the `training_set` or uses the ids
    of previously created BigML models to make predictions for the `test_set`.

    """

    association = None
    associations = None
    # no multi-label support at present

    # variables from command-line options
    resume = args.resume_
    association_ids = args.association_ids_
    output = args.predictions
    # there's only one association resource to be generated at present
    args.max_parallel_associations = 1
    # associations cannot be published yet.
    args.public_association = False

    # It is compulsory to have a description to publish either datasets or
    # associations
    if (not args.description_ and (args.public_association or
                                   args.public_dataset)):
        sys.exit("You should provide a description to publish.")

    # When using --new-fields, it is compulsory to specify also a dataset
    # id
    if args.new_fields and not args.dataset:
        sys.exit("To use --new-fields you must also provide a dataset id"
                 " to generate the new dataset from it.")

    path = u.check_dir(output)
    session_file = u"%s%s%s" % (path, os.sep, SESSIONS_LOG)
    csv_properties = {}
    # If logging is required set the file for logging
    log = None
    if args.log_file:
        u.check_dir(args.log_file)
        log = args.log_file
        # If --clear_logs the log files are cleared
        clear_log_files([log])

    # basic pre-model step: creating or retrieving the source related info
    source, resume, csv_properties, fields = pms.get_source_info(
        api, args, resume, csv_properties, session_file, path, log)
    # basic pre-model step: creating or retrieving the dataset related info
    dataset_properties = pms.get_dataset_info(
        api, args, resume, source,
        csv_properties, fields, session_file, path, log)
    (_, datasets, test_dataset,
     resume, csv_properties, fields) = dataset_properties
    if args.association_file:
        # association is retrieved from the contents of the given local JSON
        # file
        association, csv_properties, fields = u.read_local_resource(
            args.association_file,
            csv_properties=csv_properties)
        associations = [association]
        association_ids = [association['resource']]
    else:
        # association is retrieved from the remote object
        associations, association_ids, resume = pa.associations_processing(
            datasets, associations, association_ids, api, args, resume,
            fields=fields,
            session_file=session_file, path=path, log=log)
        if associations:
            association = associations[0]

    # We update the association's public state if needed
    if association:
        if isinstance(association, basestring):
            if not a.has_test(args):
                query_string = MINIMUM_MODEL
            else:
                query_string = ''
            association = u.check_resource(association, api.get_association,
                                           query_string=query_string)
        associations[0] = association
        if (args.public_association or
                (args.shared_flag and
                 r.shared_changed(args.shared, association))):
            association_args = {}
            if args.shared_flag and \
                    r.shared_changed(args.shared, association):
                association_args.update(shared=args.shared)
            if args.public_association:
                association_args.update(ras.set_publish_association_args(args))
            if association_args:
                association = ras.update_association( \
                    association, association_args, args,
                    api=api, path=path,
                    session_file=session_file)
                associations[0] = association

    # We get the fields of the association if we haven't got
    # them yet and need them
    if association and args.test_set:
        fields = pa.get_association_fields(association, csv_properties, args)

    # If predicting
    if associations and (a.has_test(args) or (test_dataset and args.remote)):
        if test_dataset is None:
            test_dataset = get_test_dataset(args)

        # Remote association sets: association sets are computed as
        # batch association sets
        # in bigml.com except when --no-batch flag is set. They are currently
        # not supported yet
        if args.remote and not args.no_batch:
            sys.exit("Batch association sets are currently not supported.")
        else:
            sys.exit("Local prediction of association sets is currently"
                     " not supported.")
    u.print_generated_files(path, log_file=session_file,
                            verbosity=args.verbosity)
    if args.reports:
        clear_reports(path)
        if args.upload:
            upload_reports(args.reports, path)
Ejemplo n.º 4
0
def compute_output(api, args):
    """ Creates one or more models using the `training_set` or uses the ids
    of previously created BigML models to make predictions for the `test_set`.

    """

    deepnet = None
    deepnets = None

    # variables from command-line options
    resume = args.resume_
    deepnet_ids = args.deepnet_ids_
    output = args.predictions
    # there's only one deepnet to be generated at present
    args.max_parallel_deepnets = 1
    # deepnets cannot be published yet.
    args.public_deepnet = False

    # It is compulsory to have a description to publish either datasets or
    # deepnet
    if (not args.description_
            and (args.public_deepnet or args.public_dataset)):
        sys.exit("You should provide a description to publish.")

    # When using --new-fields, it is compulsory to specify also a dataset
    # id
    if args.new_fields and not args.dataset:
        sys.exit("To use --new-fields you must also provide a dataset id"
                 " to generate the new dataset from it.")

    path = u.check_dir(output)
    session_file = u"%s%s%s" % (path, os.sep, SESSIONS_LOG)
    csv_properties = {}
    if args.objective_field:
        csv_properties.update({'objective_field': args.objective_field})
    # If logging is required set the file for logging
    log = None
    if args.log_file:
        u.check_dir(args.log_file)
        log = args.log_file
        # If --clear_logs the log files are cleared
        clear_log_files([log])

    # basic pre-model step: creating or retrieving the source related info
    source, resume, csv_properties, fields = pms.get_source_info(
        api, args, resume, csv_properties, session_file, path, log)
    # basic pre-model step: creating or retrieving the dataset related info
    dataset_properties = pms.get_dataset_info(api, args, resume, source,
                                              csv_properties, fields,
                                              session_file, path, log)
    (_, datasets, test_dataset, resume, csv_properties,
     fields) = dataset_properties
    if datasets:
        # Now we have a dataset, let's check if there's an objective_field
        # given by the user and update it in the fields structure
        args.objective_id_ = get_objective_id(args, fields)
    if args.deepnet_file:
        # deepnet is retrieved from the contents of the given local
        # JSON file
        deepnet, csv_properties, fields = u.read_local_resource(
            args.deepnet_file, csv_properties=csv_properties)
        deepnets = [deepnet]
        deepnet_ids = [deepnet['resource']]
    else:
        # deepnet is retrieved from the remote object
        deepnets, deepnet_ids, resume = \
            pdn.deepnets_processing( \
            datasets, deepnets, deepnet_ids, \
            api, args, resume, fields=fields, \
            session_file=session_file, path=path, log=log)
        if deepnets:
            deepnet = deepnets[0]

    # We update the deepnet's public state if needed
    if deepnet:
        if isinstance(deepnet, basestring) or \
                api.status(deepnet) != bigml.api.FINISHED:
            if not a.has_test(args):
                query_string = MINIMUM_MODEL
            elif args.export_fields:
                query_string = r.ALL_FIELDS_QS
            else:
                query_string = ''
            deepnet = u.check_resource(deepnet,
                                       api.get_deepnet,
                                       query_string=query_string)
        deepnets[0] = deepnet
        if (args.public_deepnet or
            (args.shared_flag and r.shared_changed(args.shared, deepnet))):
            deepnet_args = {}
            if args.shared_flag and r.shared_changed(args.shared, deepnet):
                deepnet_args.update(shared=args.shared)
            if args.public_deepnet:
                deepnet_args.update( \
                    set_publish_model_args(args))
            if deepnet_args:
                deepnet = update_deepnet( \
                    deepnet, deepnet_args, args,
                    api=api, path=path, \
                    session_file=session_file)
                deepnet[0] = deepnet

    # We get the fields of the deepnet if we haven't got
    # them yet and need them
    if deepnet and (args.test_set or args.export_fields):
        fields = pdn.get_deepnet_fields( \
            deepnet, csv_properties, args)

    if fields and args.export_fields:
        fields.summary_csv(os.path.join(path, args.export_fields))

    # If predicting
    if deepnets and (a.has_test(args) or \
            (test_dataset and args.remote)):
        if test_dataset is None:
            test_dataset = get_test_dataset(args)

        # Remote predictions: predictions are computed as batch predictions
        # in bigml.com except when --no-batch flag is set on
        if args.remote and not args.no_batch:
            # create test source from file
            test_name = "%s - test" % args.name
            if args.test_source is None:
                test_properties = ps.test_source_processing(
                    api,
                    args,
                    resume,
                    name=test_name,
                    session_file=session_file,
                    path=path,
                    log=log)
                (test_source, resume, csv_properties,
                 test_fields) = test_properties
            else:
                test_source_id = bigml.api.get_source_id(args.test_source)
                test_source = api.check_resource(test_source_id)
            if test_dataset is None:
                # create test dataset from test source
                dataset_args = set_basic_dataset_args(args, name=test_name)
                test_dataset, resume = pd.alternative_dataset_processing(
                    test_source,
                    "test",
                    dataset_args,
                    api,
                    args,
                    resume,
                    session_file=session_file,
                    path=path,
                    log=log)
            else:
                test_dataset_id = bigml.api.get_dataset_id(test_dataset)
                test_dataset = api.check_resource(test_dataset_id)

            csv_properties.update(objective_field=None,
                                  objective_field_present=False)
            test_fields = pd.get_fields_structure(test_dataset, csv_properties)
            batch_prediction_args = set_batch_prediction_args(
                args, fields=fields, dataset_fields=test_fields)

            remote_dn_prediction(deepnet, test_dataset, \
                batch_prediction_args, args, \
                api, resume, prediction_file=output, \
                session_file=session_file, path=path, log=log)

        else:
            dn_prediction(deepnets, fields, args, session_file=session_file)

    # If evaluate flag is on, create remote evaluation and save results in
    # json and human-readable format.
    if args.evaluate:
        # When we resume evaluation and models were already completed, we
        # should use the datasets array as test datasets
        if args.has_test_datasets_:
            test_dataset = get_test_dataset(args)
        if args.dataset_off and not args.has_test_datasets_:
            args.test_dataset_ids = datasets
        if args.test_dataset_ids and args.dataset_off:
            # Evaluate the models with the corresponding test datasets.
            test_dataset_id = bigml.api.get_dataset_id( \
                args.test_dataset_ids[0])
            test_dataset = api.check_resource(test_dataset_id)
            csv_properties.update(objective_field=None,
                                  objective_field_present=False)
            test_fields = pd.get_fields_structure(test_dataset, csv_properties)
            resume = evaluate(deepnets,
                              args.test_dataset_ids,
                              api,
                              args,
                              resume,
                              fields=fields,
                              dataset_fields=test_fields,
                              session_file=session_file,
                              path=path,
                              log=log,
                              objective_field=args.objective_field)
        else:
            dataset = datasets[0]
            if args.test_split > 0 or args.has_test_datasets_:
                dataset = test_dataset
            dataset = u.check_resource(dataset,
                                       api=api,
                                       query_string=r.ALL_FIELDS_QS)
            dataset_fields = pd.get_fields_structure(dataset, None)
            resume = evaluate(deepnets, [dataset],
                              api,
                              args,
                              resume,
                              fields=fields,
                              dataset_fields=dataset_fields,
                              session_file=session_file,
                              path=path,
                              log=log,
                              objective_field=args.objective_field)

    u.print_generated_files(path,
                            log_file=session_file,
                            verbosity=args.verbosity)
    if args.reports:
        clear_reports(path)
        if args.upload:
            upload_reports(args.reports, path)
Ejemplo n.º 5
0
def dataset_processing(source,
                       api,
                       args,
                       resume,
                       fields=None,
                       csv_properties=None,
                       multi_label_data=None,
                       session_file=None,
                       path=None,
                       log=None):
    """Creating or retrieving dataset from input arguments

    """
    datasets = []
    dataset = None
    if (args.training_set or args.source or
        (hasattr(args, "evaluate") and args.evaluate and args.test_set)):
        # if resuming, try to extract args.dataset form log files
        if resume:
            message = u.dated("Dataset not found. Resuming.\n")
            resume, args.dataset = c.checkpoint(c.is_dataset_created,
                                                path,
                                                debug=args.debug,
                                                message=message,
                                                log_file=session_file,
                                                console=args.verbosity)

    # If we have a source but no dataset or model has been provided, we
    # create a new dataset if the no_dataset option isn't set up. Also
    # if evaluate is set and test_set has been provided.
    if ((source and not args.has_datasets_ and not args.has_models_
         and not args.no_dataset)
            or (hasattr(args, "evaluate") and args.evaluate and args.test_set
                and not args.dataset)):
        dataset_args = r.set_dataset_args(args,
                                          fields,
                                          multi_label_data=multi_label_data)
        dataset = r.create_dataset(source, dataset_args, args, api, path,
                                   session_file, log)

    # If set of datasets is provided, let's check their ids.
    elif args.dataset_ids:
        for i in range(0, len(args.dataset_ids)):
            dataset_id = args.dataset_ids[i]
            if isinstance(dataset_id, dict) and "id" in dataset_id:
                dataset_id = dataset_id["id"]
            datasets.append(bigml.api.get_dataset_id(dataset_id))
        dataset = datasets[0]
    # If a dataset is provided, let's retrieve it.
    elif args.dataset:
        dataset = bigml.api.get_dataset_id(args.dataset)

    # If we already have a dataset, we check the status and get the fields if
    # we hadn't them yet.
    if dataset:
        dataset = r.get_dataset(dataset, api, args.verbosity, session_file)

        if ('object' in dataset and 'objective_field' in dataset['object']
                and 'column_number' in dataset['object']['objective_field']):
            dataset_objective = dataset['object']['objective_field'][
                'column_number']
            csv_properties.update(objective_field=dataset_objective,
                                  objective_field_present=True)

        fields = get_fields_structure(dataset, csv_properties)

        if args.public_dataset:
            r.publish_dataset(dataset, args, api, session_file)

        if hasattr(args, 'objective_field'):
            new_objective = get_new_objective(fields, args.objective_field)
        else:
            new_objective = None
        updated = False
        # We'll update the dataset if
        #  the flag --dataset_attributes is used
        #  the --multi-label flag is used and there's an --objective-field
        #  the --max-categories flag is used and there's an --objective-field
        #  the --impor-fields flag is used
        if check_dataset_update(args, dataset):
            dataset_args = r.set_dataset_args(args, fields)
            if args.shared_flag and shared_changed(args.shared, dataset):
                dataset_args.update(shared=args.shared)
            dataset = r.update_dataset(dataset,
                                       dataset_args,
                                       args,
                                       api=api,
                                       path=path,
                                       session_file=session_file)
            dataset = r.get_dataset(dataset, api, args.verbosity, session_file)
            updated = True
        if new_objective is not None:
            csv_properties.update(objective_field=args.objective_field,
                                  objective_field_present=True)
            updated = True
        if updated:
            fields = Fields(dataset['object']['fields'], **csv_properties)
        if not datasets:
            datasets = [dataset]
        else:
            datasets[0] = dataset
    return datasets, resume, csv_properties, fields
Ejemplo n.º 6
0
def evaluate(models_or_ensembles,
             datasets,
             api,
             args,
             resume,
             session_file=None,
             path=None,
             log=None,
             fields=None,
             dataset_fields=None,
             labels=None,
             all_labels=None,
             objective_field=None):
    """Evaluates a list of models or ensembles with the given dataset

    """
    output = args.predictions
    evaluation_files = []
    evaluations, resume = evaluations_process(models_or_ensembles,
                                              datasets,
                                              fields,
                                              dataset_fields,
                                              api,
                                              args,
                                              resume,
                                              session_file=session_file,
                                              path=path,
                                              log=log,
                                              labels=labels,
                                              all_labels=all_labels,
                                              objective_field=objective_field)
    if hasattr(args, 'multi_label') and args.multi_label:
        file_labels = [
            slugify(name)
            for name in u.objective_field_names(models_or_ensembles, api)
        ]
    for index, evaluation in enumerate(evaluations):
        evaluation = r.get_evaluation(evaluation, api, args.verbosity,
                                      session_file)
        if shared_changed(args.shared, evaluation):
            evaluation_args = {"shared": args.shared}
            evaluation = r.update_evaluation(evaluation,
                                             evaluation_args,
                                             args,
                                             api=api,
                                             path=path,
                                             session_file=session_file)
        file_name = output
        if hasattr(args, 'multi_label') and args.multi_label:
            suffix = file_labels[index]
            file_name += "_%s" % suffix
            evaluation_files.append("%s.json" % file_name)
        if args.test_datasets or args.dataset_off:
            suffix = evaluation['resource'].replace('evaluation/', '_')
            file_name += "_%s" % suffix
            evaluation_files.append("%s.json" % file_name)
        r.save_evaluation(evaluation, file_name, api)
    if (hasattr(args, 'multi_label') and args.multi_label) or \
            args.test_datasets or args.dataset_off:
        mean_evaluation = average_evaluations(evaluation_files)
        r.save_evaluation(mean_evaluation, output, api)
    return resume
Ejemplo n.º 7
0
def compute_output(api, args):
    """ Creates a fusion using the `models` list or uses the ids
    of a previously created BigML fusion to make predictions for the `test_set`.

    """

    fusion = None

    # variables from command-line options
    resume = args.resume_
    fusion_ids = args.fusion_ids_
    output = args.predictions
    # there's only one fusion to be generated at present
    args.max_parallel_fusions = 1
    # fusion cannot be published yet.
    args.public_fusion = False

    # It is compulsory to have a description to publish either datasets or
    # fusions
    if (not args.description_ and args.public_fusion):
        sys.exit("You should provide a description to publish.")

    path = u.check_dir(output)
    session_file = u"%s%s%s" % (path, os.sep, SESSIONS_LOG)
    csv_properties = {}
    # If logging is required set the file for logging
    log = None
    if args.log_file:
        u.check_dir(args.log_file)
        log = args.log_file
        # If --clear_logs the log files are cleared
        clear_log_files([log])

    if args.fusion_file:
        # fusion regression is retrieved from the contents of the given local
        # JSON file
        fusion, csv_properties, fields = u.read_local_resource(
            args.fusion_file, csv_properties=csv_properties)
        fusion_ids = [fusion]
    else:
        # fusion is retrieved from the remote object or created
        fusion, resume = \
            pf.fusion_processing( \
            fusion, fusion_ids, \
            api, args, resume, \
            session_file=session_file, path=path, log=log)

    # We update the fusion public state if needed
    if fusion:
        if isinstance(fusion, basestring):
            if not a.has_test(args):
                query_string = MINIMUM_MODEL
            elif args.export_fields:
                query_string = r.ALL_FIELDS_QS
            else:
                query_string = ''
            fusion = u.check_resource(fusion,
                                      api.get_fusion,
                                      query_string=query_string)
        if (args.public_fusion or
            (args.shared_flag and r.shared_changed(args.shared, fusion))):
            fusion_args = {}
            if args.shared_flag and r.shared_changed(args.shared, fusion):
                fusion_args.update(shared=args.shared)
            if args.public_fusion:
                fusion_args.update( \
                    rfus.set_publish_fusion_args(args))
            if fusion_args:
                fusion = rfus.update_fusion( \
                    fusion, fusion_args, args,
                    api=api, path=path, \
                    session_file=session_file)

    # We get the fields of the fusion if we haven't got
    # them yet and need them
    if fusion and (args.test_set or args.evaluate):
        fields = pf.get_fusion_fields( \
            fusion, csv_properties, args)

    # If predicting
    if fusion and (a.has_test(args) or \
            args.remote):
        test_dataset = get_test_dataset(args)

        # Remote predictions: predictions are computed as batch predictions
        # in bigml.com except when --no-batch flag is set on
        if args.remote and not args.no_batch:
            # create test source from file
            test_name = "%s - test" % args.name
            if args.test_source is None:
                test_properties = ps.test_source_processing(
                    api,
                    args,
                    resume,
                    name=test_name,
                    session_file=session_file,
                    path=path,
                    log=log)
                (test_source, resume, csv_properties,
                 test_fields) = test_properties
            else:
                test_source_id = bigml.api.get_source_id(args.test_source)
                test_source = api.check_resource(test_source_id)
            if test_dataset is None:
                # create test dataset from test source
                dataset_args = set_basic_dataset_args(args, name=test_name)
                test_dataset, resume = pd.alternative_dataset_processing(
                    test_source,
                    "test",
                    dataset_args,
                    api,
                    args,
                    resume,
                    session_file=session_file,
                    path=path,
                    log=log)
            else:
                test_dataset_id = bigml.api.get_dataset_id(test_dataset)
                test_dataset = api.check_resource(test_dataset_id)

            csv_properties.update(objective_field=None,
                                  objective_field_present=False)
            test_fields = pd.get_fields_structure(test_dataset, csv_properties)
            if not args.evaluate:
                batch_prediction_args = set_batch_prediction_args(
                    args, fields=fields, dataset_fields=test_fields)

                remote_prediction(fusion, test_dataset, \
                    batch_prediction_args, args, \
                    api, resume, prediction_file=output, \
                    session_file=session_file, path=path, log=log)

        else:
            prediction([fusion], fields, args, session_file=session_file)

    # If evaluate flag is on, create remote evaluation and save results in
    # json and human-readable format.
    if args.evaluate:
        # When we resume evaluation and models were already completed, we
        # should use the datasets array as test datasets
        args.max_parallel_evaluations = 1  # only one evaluation at present
        args.cross_validation_rate = 0  # no cross-validation
        args.number_of_evaluations = 1  # only one evaluation
        if args.has_test_datasets_:
            test_dataset = get_test_dataset(args)
            dataset = test_dataset
            dataset = u.check_resource(dataset,
                                       api=api,
                                       query_string=r.ALL_FIELDS_QS)
            dataset_fields = pd.get_fields_structure(dataset, None)
            resume = evaluate([fusion], [dataset],
                              api,
                              args,
                              resume,
                              fields=fields,
                              dataset_fields=dataset_fields,
                              session_file=session_file,
                              path=path,
                              log=log,
                              objective_field=args.objective_field)

    u.print_generated_files(path,
                            log_file=session_file,
                            verbosity=args.verbosity)
    if args.reports:
        clear_reports(path)
        if args.upload:
            upload_reports(args.reports, path)
Ejemplo n.º 8
0
def compute_output(api, args):
    """ Creates one or more anomaly detectors using the `training_set`
        or uses the ids of previously created BigML models to make
        predictions for the `test_set`.

    """

    anomaly = None
    anomalies = None
    # no multi-label support at present

    # variables from command-line options
    resume = args.resume_
    anomaly_ids = args.anomaly_ids_
    output = args.predictions
    # there's only one anomaly detector to be generated at present
    args.max_parallel_anomalies = 1
    # anomalies cannot be published yet.
    args.public_anomaly = False

    # It is compulsory to have a description to publish either datasets or
    # anomalies
    if (not args.description_
            and (args.public_anomaly or args.public_dataset)):
        sys.exit("You should provide a description to publish.")

    # When using --new-fields, it is compulsory to specify also a dataset
    # id
    if args.new_fields and not args.dataset:
        sys.exit("To use --new-fields you must also provide a dataset id"
                 " to generate the new dataset from it.")

    path = u.check_dir(output)
    session_file = u"%s%s%s" % (path, os.sep, SESSIONS_LOG)
    csv_properties = {}
    # If logging is required set the file for logging
    log = None
    if args.log_file:
        u.check_dir(args.log_file)
        log = args.log_file
        # If --clear_logs the log files are cleared
        clear_log_files([log])
    # basic pre-model step: creating or retrieving the source related info
    source, resume, csv_properties, fields = pms.get_source_info(
        api, args, resume, csv_properties, session_file, path, log)
    # basic pre-model step: creating or retrieving the dataset related info
    dataset_properties = pms.get_dataset_info(api, args, resume, source,
                                              csv_properties, fields,
                                              session_file, path, log)
    (_, datasets, test_dataset, resume, csv_properties,
     fields) = dataset_properties
    if args.anomaly_file:
        # anomaly is retrieved from the contents of the given local JSON file
        anomaly, csv_properties, fields = u.read_local_resource(
            args.anomaly_file, csv_properties=csv_properties)
        anomalies = [anomaly]
        anomaly_ids = [anomaly['resource']]
    else:
        # anomaly is retrieved from the remote object
        anomalies, anomaly_ids, resume = pa.anomalies_processing(
            datasets,
            anomalies,
            anomaly_ids,
            api,
            args,
            resume,
            fields=fields,
            session_file=session_file,
            path=path,
            log=log)
    if anomalies:
        anomaly = anomalies[0]

    # We update the anomaly's public state if needed
    if anomaly:
        if not a.has_test(args) and not args.anomalies_dataset:
            query_string = MINIMUM_MODEL
        elif not a.has_test(args):
            query_string = ";".join([EXCLUDE_TREES, r.ALL_FIELDS_QS])
        else:
            query_string = r.ALL_FIELDS_QS
        try:
            anomaly_id = anomaly.get('resource', anomaly)
        except AttributeError:
            anomaly_id = anomaly
        anomaly = u.check_resource(anomaly_id,
                                   query_string=query_string,
                                   api=api)
        anomalies[0] = anomaly
        if (args.public_anomaly or
            (args.shared_flag and r.shared_changed(args.shared, anomaly))):
            anomaly_args = {}
            if args.shared_flag and r.shared_changed(args.shared, anomaly):
                anomaly_args.update(shared=args.shared)
            if args.public_anomaly:
                anomaly_args.update(ra.set_publish_anomaly_args(args))
            if anomaly_args:
                anomaly = ra.update_anomaly(anomaly,
                                            anomaly_args,
                                            args,
                                            api=api,
                                            path=path,
                                            session_file=session_file)
                anomalies[0] = anomaly

    # We get the fields of the anomaly detector if we haven't got
    # them yet and need them
    if anomaly and (args.test_set or args.export_fields):
        fields = pa.get_anomaly_fields(anomaly, csv_properties, args)

    # If creating a top anomalies excluded/included dataset
    if args.anomalies_dataset and anomaly:
        origin_dataset = anomaly['object'].get('dataset')
        if origin_dataset is None:
            sys.exit("The dataset used to generate the anomaly detector "
                     "cannot be found. Failed to generate the anomalies "
                     " dataset.")
        local_anomaly = Anomaly(anomaly)
        include = args.anomalies_dataset == ANOMALIES_IN
        args.anomaly_filter_ = local_anomaly.anomalies_filter(include=include)
        _, resume = pd.create_new_dataset(origin_dataset,
                                          api,
                                          args,
                                          resume,
                                          fields=fields,
                                          session_file=session_file,
                                          path=path,
                                          log=log)
    # If predicting
    if anomaly and args.score:
        args.test_dataset = anomaly['object']['dataset']
    if anomalies and (a.has_test(args) or (test_dataset and args.remote)):
        # test dataset can be defined by --test-split or --test-dataset or
        # --test-datasets
        if test_dataset is None:
            test_dataset = get_test_dataset(args)
        # Remote anomaly scores: scores are computed as batch anomaly scores
        # in bigml.com except when --no-batch flag is set on
        if args.remote and not args.no_batch:
            # create test source from file
            test_name = "%s - test" % args.name
            if args.test_source is None:
                test_properties = ps.test_source_processing(
                    api,
                    args,
                    resume,
                    name=test_name,
                    session_file=session_file,
                    path=path,
                    log=log)
                (test_source, resume, csv_properties,
                 test_fields) = test_properties
            else:
                test_source_id = bigml.api.get_source_id(args.test_source)
                test_source = api.check_resource(test_source_id)
            if test_dataset is None:
                # create test dataset from test source
                dataset_args = set_basic_dataset_args(args, name=test_name)
                test_dataset, resume = pd.alternative_dataset_processing(
                    test_source,
                    "test",
                    dataset_args,
                    api,
                    args,
                    resume,
                    session_file=session_file,
                    path=path,
                    log=log)
            else:
                test_dataset_id = bigml.api.get_dataset_id(test_dataset)
                test_dataset = api.check_resource(test_dataset_id)
            test_fields = pd.get_fields_structure(test_dataset, csv_properties)
            batch_anomaly_score_args = set_batch_anomaly_score_args(
                args, fields=fields, dataset_fields=test_fields)

            remote_anomaly_score(anomaly,
                                 test_dataset,
                                 batch_anomaly_score_args,
                                 args,
                                 api,
                                 resume,
                                 prediction_file=output,
                                 session_file=session_file,
                                 path=path,
                                 log=log)

        else:
            anomaly_score(anomalies, fields, args, session_file=session_file)

    if fields and args.export_fields:
        fields.summary_csv(os.path.join(path, args.export_fields))

    u.print_generated_files(path,
                            log_file=session_file,
                            verbosity=args.verbosity)
    if args.reports:
        clear_reports(path)
        if args.upload:
            upload_reports(args.reports, path)
Ejemplo n.º 9
0
def compute_output(api, args):
    """ Creates one or more models using the `training_set` or uses the ids
    of previously created BigML models to make predictions for the `test_set`.

    """

    pca = None

    # variables from command-line options
    resume = args.resume_
    pca_ids = args.pca_ids_
    output = args.projections
    # there's only one pca to be generated at present
    args.max_parallel_pcas = 1
    # pca cannot be published yet.
    args.public_pca = False

    # It is compulsory to have a description to publish either datasets or
    # pcas
    if (not args.description_ and (args.public_pca or args.public_dataset)):
        sys.exit("You should provide a description to publish.")

    # When using --new-fields, it is compulsory to specify also a dataset
    # id
    if args.new_fields and not args.dataset:
        sys.exit("To use --new-fields you must also provide a dataset id"
                 " to generate the new dataset from it.")

    path = u.check_dir(output)
    session_file = u"%s%s%s" % (path, os.sep, SESSIONS_LOG)
    csv_properties = {}
    if args.objective_field:
        csv_properties.update({'objective_field': args.objective_field})
    # If logging is required set the file for logging
    log = None
    if args.log_file:
        u.check_dir(args.log_file)
        log = args.log_file
        # If --clear_logs the log files are cleared
        clear_log_files([log])

    # basic pre-model step: creating or retrieving the source related info
    source, resume, csv_properties, fields = pms.get_source_info(
        api, args, resume, csv_properties, session_file, path, log)
    # basic pre-model step: creating or retrieving the dataset related info
    dataset_properties = pms.get_dataset_info(api, args, resume, source,
                                              csv_properties, fields,
                                              session_file, path, log)
    (_, datasets, test_dataset, resume, csv_properties,
     fields) = dataset_properties
    if args.pca_file:
        # pca regression is retrieved from the contents of the given local
        # JSON file
        pca, csv_properties, fields = u.read_local_resource(
            args.pca_file, csv_properties=csv_properties)
        pca_ids = [pca]
    else:
        # pca is retrieved from the remote object or created
        pca, resume = \
            pc.pca_processing( \
            datasets, pca, pca_ids, \
            api, args, resume, fields=fields, \
            session_file=session_file, path=path, log=log)

    # We update the pca public state if needed
    if pca:
        if isinstance(pca, basestring):
            if not a.has_test(args):
                query_string = MINIMUM_MODEL
            elif args.export_fields:
                query_string = r.ALL_FIELDS_QS
            else:
                query_string = ''
            pca = u.check_resource(pca, api.get_pca, query_string=query_string)
        if (args.public_pca
                or (args.shared_flag and shared_changed(args.shared, pca))):
            pca_args = {}
            if args.shared_flag and shared_changed(args.shared, pca):
                pca_args.update(shared=args.shared)
            if args.public_pca:
                pca_args.update( \
                    r.set_publish_pca_args(args))
            if pca_args:
                pca = r.update_pca( \
                    pca, pca_args, args,
                    api=api, path=path, \
                    session_file=session_file)

    # We get the fields of the pca if we haven't got
    # them yet and need them
    if pca and (args.test_set or args.export_fields):
        fields = pc.get_pca_fields( \
            pca, csv_properties, args)

    if fields and args.export_fields:
        fields.summary_csv(os.path.join(path, args.export_fields))

    # If predicting
    if pca and (a.has_test(args) or \
            (test_dataset and args.remote)):
        if test_dataset is None:
            test_dataset = get_test_dataset(args)

        # Remote projections: projections are computed as batch projections
        # in bigml.com except when --no-batch flag is set on
        if args.remote and not args.no_batch:
            # create test source from file
            test_name = "%s - test" % args.name
            if args.test_source is None:
                test_properties = ps.test_source_processing(
                    api,
                    args,
                    resume,
                    name=test_name,
                    session_file=session_file,
                    path=path,
                    log=log)
                (test_source, resume, csv_properties,
                 test_fields) = test_properties
            else:
                test_source_id = bigml.api.get_source_id(args.test_source)
                test_source = api.check_resource(test_source_id)
            if test_dataset is None:
                # create test dataset from test source
                dataset_args = set_basic_dataset_args(args, name=test_name)
                test_dataset, resume = pd.alternative_dataset_processing(
                    test_source,
                    "test",
                    dataset_args,
                    api,
                    args,
                    resume,
                    session_file=session_file,
                    path=path,
                    log=log)
            else:
                test_dataset_id = bigml.api.get_dataset_id(test_dataset)
                test_dataset = api.check_resource(test_dataset_id)

            csv_properties.update(objective_field=None,
                                  objective_field_present=False)
            test_fields = pd.get_fields_structure(test_dataset, csv_properties)
            batch_projection_args = set_batch_projection_args(
                args, fields=fields, dataset_fields=test_fields)

            remote_projection(pca, test_dataset, \
                batch_projection_args, args, \
                api, resume, projection_file=output, \
                session_file=session_file, path=path, log=log)

        else:
            projection(pca, fields, args, session_file=session_file)

    u.print_generated_files(path,
                            log_file=session_file,
                            verbosity=args.verbosity)
    if args.reports:
        clear_reports(path)
        if args.upload:
            upload_reports(args.reports, path)
Ejemplo n.º 10
0
def compute_output(api, args):
    """ Creates a sample based on a `train_set`, source or dataset.

    """

    samples = None
    # variables from command-line options
    resume = args.resume_
    sample_ids = args.sample_ids_
    output = args.predictions
    # there's only one sample to be generated at present
    args.max_parallel_clusters = 1
    # sample cannot be published yet.
    args.public_sample = False

    # It is compulsory to have a description to publish either datasets or
    # clusters
    if (not args.description_ and (args.public_sample or args.public_dataset)):
        sys.exit("You should provide a description to publish.")

    # When using --new-fields, it is compulsory to specify also a dataset
    # id
    if args.new_fields and not args.dataset:
        sys.exit("To use --new-fields you must also provide a dataset id"
                 " to generate the new dataset from it.")

    path = u.check_dir(output)
    session_file = u"%s%s%s" % (path, os.sep, SESSIONS_LOG)
    csv_properties = {}
    # If logging is required set the file for logging
    log = None
    if args.log_file:
        u.check_dir(args.log_file)
        log = args.log_file
        # If --clear_logs the log files are cleared
        clear_log_files([log])

    # basic pre-sample step: creating or retrieving the source related info
    source, resume, csv_properties, fields = pms.get_source_info(
        api, args, resume, csv_properties, session_file, path, log)
    # basic pre-sample step: creating or retrieving the dataset related info
    dataset_properties = pms.get_dataset_info(api, args, resume, source,
                                              csv_properties, fields,
                                              session_file, path, log)
    (_, datasets, _, resume, csv_properties, fields) = dataset_properties
    if args.sample_file:
        # sample is retrieved from the contents of the given local JSON file
        sample, csv_properties, fields = u.read_local_resource(
            args.sample_file, csv_properties=csv_properties)
        samples = [sample]
        sample_ids = [sample['resource']]
    else:
        # sample is retrieved from the remote object
        samples, sample_ids, resume = psa.samples_processing(
            datasets,
            samples,
            sample_ids,
            api,
            args,
            resume,
            session_file=session_file,
            path=path,
            log=log)
        if samples:
            sample = samples[0]

    # We update the sample's public state if needed
    if sample:
        if isinstance(sample, basestring):
            # build the query string from the sample options
            sample = u.check_resource(sample, api.get_sample)
        samples[0] = sample
        if (args.public_sample
                or (args.shared_flag and shared_changed(args.shared, sample))):
            sample_args = {}
            if args.shared_flag and shared_changed(args.shared, sample):
                sample_args.update(shared=args.shared)
            if args.public_sample:
                sample_args.update(r.set_publish_sample_args(args))
            if sample_args:
                sample = r.update_sample(sample,
                                         sample_args,
                                         args,
                                         api=api,
                                         path=path,
                                         session_file=session_file)
                samples[0] = sample

    # We get the fields of the sample if we haven't got
    # them yet and need them
    if sample and psa.needs_sample_fields(args):
        fields = psa.get_sample_fields(sample, csv_properties, args)

    if fields and args.export_fields:
        fields.summary_csv(os.path.join(path, args.export_fields))

    sample_file(samples[0],
                fields,
                args,
                api,
                path=path,
                session_file=session_file)

    u.print_generated_files(path,
                            log_file=session_file,
                            verbosity=args.verbosity)
    if args.reports:
        clear_reports(path)
        if args.upload:
            upload_reports(args.reports, path)
Ejemplo n.º 11
0
def compute_output(api, args):
    """ Creates one or more models using the `training_set` or uses the ids
    of previously created BigML models to make predictions for the `test_set`.

    """
    source = None
    dataset = None
    model = None
    models = None
    fields = None
    other_label = OTHER
    ensemble_ids = []
    multi_label_data = None
    multi_label_fields = []
    #local_ensemble = None
    test_dataset = None
    datasets = None

    # variables from command-line options
    resume = args.resume_
    model_ids = args.model_ids_
    output = args.output
    dataset_fields = args.dataset_fields_

    check_args_coherence(args)
    path = u.check_dir(output)

    session_file = "%s%s%s" % (path, os.sep, SESSIONS_LOG)
    csv_properties = {}
    # If logging is required set the file for logging
    log = None
    if args.log_file:
        u.check_dir(args.log_file)
        log = args.log_file
        # If --clear_logs the log files are cleared
        clear_log_files([log])

    # labels to be used in multi-label expansion
    labels = (None if args.labels is None else [
        label.strip() for label in args.labels.split(args.args_separator)
    ])
    if labels is not None:
        labels = sorted([label for label in labels])

    # multi_label file must be preprocessed to obtain a new extended file
    if args.multi_label and args.training_set is not None:
        (args.training_set, multi_label_data) = ps.multi_label_expansion(
            args.training_set,
            args.train_header,
            args,
            path,
            labels=labels,
            session_file=session_file)
        args.train_header = True
        args.objective_field = multi_label_data["objective_name"]
        all_labels = l.get_all_labels(multi_label_data)
        if not labels:
            labels = all_labels
    else:
        all_labels = labels
    if args.objective_field:
        csv_properties.update({'objective_field': args.objective_field})
    if args.source_file:
        # source is retrieved from the contents of the given local JSON file
        source, csv_properties, fields = u.read_local_resource(
            args.source_file, csv_properties=csv_properties)
    else:
        # source is retrieved from the remote object
        source, resume, csv_properties, fields = ps.source_processing(
            api,
            args,
            resume,
            csv_properties=csv_properties,
            multi_label_data=multi_label_data,
            session_file=session_file,
            path=path,
            log=log)
    if source is not None:
        args.source = bigml.api.get_source_id(source)
    if args.multi_label and source:
        multi_label_data = l.get_multi_label_data(source)
        (args.objective_field, labels, all_labels,
         multi_label_fields) = l.multi_label_sync(args.objective_field, labels,
                                                  multi_label_data, fields,
                                                  multi_label_fields)
    if fields and args.export_fields:
        fields.summary_csv(os.path.join(path, args.export_fields))
    if args.dataset_file:
        # dataset is retrieved from the contents of the given local JSON file
        model_dataset, csv_properties, fields = u.read_local_resource(
            args.dataset_file, csv_properties=csv_properties)
        if not args.datasets:
            datasets = [model_dataset]
            dataset = model_dataset
        else:
            datasets = u.read_datasets(args.datasets)
    if not datasets:
        # dataset is retrieved from the remote object
        datasets, resume, csv_properties, fields = pd.dataset_processing(
            source,
            api,
            args,
            resume,
            fields=fields,
            csv_properties=csv_properties,
            multi_label_data=multi_label_data,
            session_file=session_file,
            path=path,
            log=log)
    if datasets:
        dataset = datasets[0]
        if args.to_csv is not None:
            resume = pd.export_dataset(dataset,
                                       api,
                                       args,
                                       resume,
                                       session_file=session_file,
                                       path=path)

        # Now we have a dataset, let's check if there's an objective_field
        # given by the user and update it in the fields structure
        args.objective_id_ = get_objective_id(args, fields)

    # If test_split is used, split the dataset in a training and a test dataset
    # according to the given split
    if args.test_split > 0:
        dataset, test_dataset, resume = pd.split_processing(
            dataset,
            api,
            args,
            resume,
            multi_label_data=multi_label_data,
            session_file=session_file,
            path=path,
            log=log)
        datasets[0] = dataset

    # Check if the dataset has a categorical objective field and it
    # has a max_categories limit for categories
    if args.max_categories > 0 and len(datasets) == 1:
        if pd.check_max_categories(fields.fields[args.objective_id_]):
            distribution = pd.get_categories_distribution(
                dataset, args.objective_id_)
            if distribution and len(distribution) > args.max_categories:
                categories = [element[0] for element in distribution]
                other_label = pd.create_other_label(categories, other_label)
                datasets, resume = pd.create_categories_datasets(
                    dataset,
                    distribution,
                    fields,
                    args,
                    api,
                    resume,
                    session_file=session_file,
                    path=path,
                    log=log,
                    other_label=other_label)
        else:
            sys.exit("The provided objective field is not categorical nor "
                     "a full terms only text field. "
                     "Only these fields can be used with"
                     "  --max-categories")

    # If multi-dataset flag is on, generate a new dataset from the given
    # list of datasets
    if args.multi_dataset:
        dataset, resume = pd.create_new_dataset(datasets,
                                                api,
                                                args,
                                                resume,
                                                fields=fields,
                                                session_file=session_file,
                                                path=path,
                                                log=log)
        datasets = [dataset]

    # Check if the dataset has a generators file associated with it, and
    # generate a new dataset with the specified field structure. Also
    # if the --to-dataset flag is used to clone or sample the original dataset
    if args.new_fields or (args.sample_rate != 1 and args.no_model) or \
            (args.lisp_filter or args.json_filter) and not has_source(args):
        if fields is None:
            if isinstance(dataset, basestring):
                dataset = u.check_resource(dataset, api=api)
            fields = Fields(dataset, csv_properties)
        args.objective_id_ = get_objective_id(args, fields)
        args.objective_name_ = fields.field_name(args.objective_id_)
        dataset, resume = pd.create_new_dataset(dataset,
                                                api,
                                                args,
                                                resume,
                                                fields=fields,
                                                session_file=session_file,
                                                path=path,
                                                log=log)
        datasets[0] = dataset
        # rebuild fields structure for new ids and fields
        csv_properties.update({
            'objective_field': args.objective_name_,
            'objective_field_present': True
        })
        fields = pd.get_fields_structure(dataset, csv_properties)
        args.objective_id_ = get_objective_id(args, fields)
    if args.multi_label and dataset and multi_label_data is None:
        multi_label_data = l.get_multi_label_data(dataset)
        (args.objective_field, labels, all_labels,
         multi_label_fields) = l.multi_label_sync(args.objective_field, labels,
                                                  multi_label_data, fields,
                                                  multi_label_fields)

    if dataset:
        # retrieves max_categories data, if any
        args.max_categories = get_metadata(dataset, 'max_categories',
                                           args.max_categories)
        other_label = get_metadata(dataset, 'other_label', other_label)
    if fields and args.export_fields:
        fields.summary_csv(os.path.join(path, args.export_fields))
    if args.model_file:
        # model is retrieved from the contents of the given local JSON file
        model, csv_properties, fields = u.read_local_resource(
            args.model_file, csv_properties=csv_properties)
        models = [model]
        model_ids = [model['resource']]
        ensemble_ids = []
    elif args.ensemble_file:
        # model is retrieved from the contents of the given local JSON file
        ensemble, csv_properties, fields = u.read_local_resource(
            args.ensemble_file, csv_properties=csv_properties)
        model_ids = ensemble['object']['models'][:]
        ensemble_ids = [ensemble['resource']]
        models = model_ids[:]

        model = retrieve_resource(args.retrieve_api_,
                                  models[0],
                                  query_string=r.ALL_FIELDS_QS)
        models[0] = model
    else:
        # model is retrieved from the remote object
        models, model_ids, ensemble_ids, resume = pm.models_processing(
            datasets,
            models,
            model_ids,
            api,
            args,
            resume,
            fields=fields,
            session_file=session_file,
            path=path,
            log=log,
            labels=labels,
            multi_label_data=multi_label_data,
            other_label=other_label)

    if models:
        model = models[0]
        single_model = len(models) == 1
    # If multi-label flag is set and no training_set was provided, label
    # info is extracted from the user_metadata. If models belong to an
    # ensemble, the ensemble must be retrieved to get the user_metadata.
    if model and args.multi_label and multi_label_data is None:
        if ensemble_ids and isinstance(ensemble_ids[0], dict):
            resource = ensemble_ids[0]
        elif belongs_to_ensemble(model):
            ensemble_id = get_ensemble_id(model)
            resource = rens.get_ensemble(ensemble_id,
                                         api=api,
                                         verbosity=args.verbosity,
                                         session_file=session_file)
        else:
            resource = model
        multi_label_data = l.get_multi_label_data(resource)

    # We update the model's public state if needed
    if model:
        if (isinstance(model, basestring)
                or bigml.api.get_status(model)['code'] != bigml.api.FINISHED):
            if not args.evaluate and not a.has_train(args) and \
                    not a.has_test(args):
                query_string = MINIMUM_MODEL
            elif not args.test_header:
                query_string = r.ALL_FIELDS_QS
            else:
                query_string = "%s;%s" % (r.ALL_FIELDS_QS, r.FIELDS_QS)
            model = u.check_resource(model,
                                     api.get_model,
                                     query_string=query_string)
            models[0] = model
        if (args.black_box or args.white_box or
            (args.shared_flag and r.shared_changed(args.shared, model))):
            model_args = {}
            if args.shared_flag and r.shared_changed(args.shared, model):
                model_args.update(shared=args.shared)
            if args.black_box or args.white_box:
                model_args.update(rmod.set_publish_model_args(args))
            if model_args:
                model = rmod.update_model(model,
                                          model_args,
                                          args,
                                          api=api,
                                          path=path,
                                          session_file=session_file)
                models[0] = model

    # We get the fields of the model if we haven't got
    # them yet and need them
    if model and not args.evaluate and (a.has_test(args)
                                        or args.export_fields):
        # if we are using boosted ensembles to predict, activate boosting
        if model['object'].get('boosted_ensemble'):
            args.boosting = True
        # If more than one model, use the full field structure
        if (not single_model and not args.multi_label
                and belongs_to_ensemble(model)):
            if ensemble_ids:
                ensemble_id = ensemble_ids[0]
                args.ensemble_ids_ = ensemble_ids
            else:
                ensemble_id = get_ensemble_id(model)
        fields = pm.get_model_fields(model,
                                     csv_properties,
                                     args,
                                     single_model=single_model,
                                     multi_label_data=multi_label_data)
        # Free memory after getting fields
        # local_ensemble = None
        gc.collect()

    # Fills in all_labels from user_metadata
    if args.multi_label and not all_labels:
        (args.objective_field, labels, all_labels,
         multi_label_fields) = l.multi_label_sync(args.objective_field, labels,
                                                  multi_label_data, fields,
                                                  multi_label_fields)
    if model:
        # retrieves max_categories data, if any
        args.max_categories = get_metadata(model, 'max_categories',
                                           args.max_categories)
        other_label = get_metadata(model, 'other_label', other_label)
    if fields and args.export_fields:
        fields.summary_csv(os.path.join(path, args.export_fields))
    # If predicting
    if (models and (a.has_test(args) or (test_dataset and args.remote))
            and not args.evaluate):
        models_per_label = 1
        if test_dataset is None:
            test_dataset = get_test_dataset(args)

        if args.multi_label:
            # When prediction starts from existing models, the
            # multi_label_fields can be retrieved from the user_metadata
            # in the models
            if args.multi_label_fields is None and multi_label_fields:
                multi_label_field_names = [
                    field[1] for field in multi_label_fields
                ]
                args.multi_label_fields = ",".join(multi_label_field_names)
            test_set = ps.multi_label_expansion(args.test_set,
                                                args.test_header,
                                                args,
                                                path,
                                                labels=labels,
                                                session_file=session_file,
                                                input_flag=True)[0]
            test_set_header = True

        # Remote predictions: predictions are computed as batch predictions
        # in bigml.com except when --no-batch flag is set on or multi-label
        # or max-categories are used
        if (args.remote and not args.no_batch and not args.multi_label
                and not args.method == COMBINATION):
            # create test source from file
            test_name = "%s - test" % args.name
            if args.test_source is None:
                test_properties = ps.test_source_processing(
                    api,
                    args,
                    resume,
                    session_file=session_file,
                    path=path,
                    log=log)

                (test_source, resume, csv_properties,
                 test_fields) = test_properties
            else:
                test_source_id = bigml.api.get_source_id(args.test_source)
                test_source = api.check_resource(test_source_id)
            if test_dataset is None:
                # create test dataset from test source
                dataset_args = rds.set_basic_dataset_args(args, name=test_name)
                test_dataset, resume = pd.alternative_dataset_processing(
                    test_source,
                    "test",
                    dataset_args,
                    api,
                    args,
                    resume,
                    session_file=session_file,
                    path=path,
                    log=log)
            else:
                test_dataset_id = bigml.api.get_dataset_id(test_dataset)
                test_dataset = api.check_resource(test_dataset_id)

            csv_properties.update(objective_field=None,
                                  objective_field_present=False)
            test_fields = pd.get_fields_structure(test_dataset, csv_properties)

            if args.to_dataset and args.dataset_off:
                model = api.check_resource(model['resource'],
                                           query_string=r.ALL_FIELDS_QS)
                model_fields = Fields(model)
                objective_field_name = model_fields.field_name( \
                    model_fields.objective_field)
                if objective_field_name in test_fields.fields_by_name.keys():
                    args.prediction_name = "%s (predicted)" % \
                        objective_field_name
            batch_prediction_args = rbp.set_batch_prediction_args(
                args, fields=fields, dataset_fields=test_fields)

            remote_predict(model,
                           test_dataset,
                           batch_prediction_args,
                           args,
                           api,
                           resume,
                           prediction_file=output,
                           session_file=session_file,
                           path=path,
                           log=log)
        else:
            models_per_label = args.number_of_models
            if (args.multi_label and ensemble_ids
                    and args.number_of_models == 1):
                # use case where ensembles are read from a file
                models_per_label = len(models) / len(ensemble_ids)
            predict(models,
                    fields,
                    args,
                    api=api,
                    log=log,
                    resume=resume,
                    session_file=session_file,
                    labels=labels,
                    models_per_label=models_per_label,
                    other_label=other_label,
                    multi_label_data=multi_label_data)

    # When combine_votes flag is used, retrieve the predictions files saved
    # in the comma separated list of directories and combine them
    if args.votes_files_:
        model_id = re.sub(r'.*(model_[a-f0-9]{24})__predictions\.csv$', r'\1',
                          args.votes_files_[0]).replace("_", "/")
        try:
            model = u.check_resource(model_id, api.get_model)
        except ValueError, exception:
            sys.exit("Failed to get model %s: %s" % (model_id, str(exception)))

        local_model = Model(model)
        message = u.dated("Combining votes.\n")
        u.log_message(message, log_file=session_file, console=args.verbosity)

        combine_votes(args.votes_files_,
                      local_model.to_prediction,
                      output,
                      method=args.method)
Ejemplo n.º 12
0
def compute_output(api, args):
    """ Creates one or more models using the `training_set` or uses the ids
    of previously created BigML models to make predictions for the `test_set`.

    """

    cluster = None
    clusters = None
    # no multi-label support at present

    # variables from command-line options
    resume = args.resume_
    cluster_ids = args.cluster_ids_
    output = args.predictions
    # there's only one cluster to be generated at present
    args.max_parallel_clusters = 1
    # clusters cannot be published yet.
    args.public_cluster = False

    # It is compulsory to have a description to publish either datasets or
    # clusters
    if (not args.description_
            and (args.public_cluster or args.public_dataset)):
        sys.exit("You should provide a description to publish.")

    # When using --new-fields, it is compulsory to specify also a dataset
    # id
    if args.new_fields and not args.dataset:
        sys.exit("To use --new-fields you must also provide a dataset id"
                 " to generate the new dataset from it.")

    path = u.check_dir(output)
    session_file = u"%s%s%s" % (path, os.sep, SESSIONS_LOG)
    csv_properties = {}
    # If logging is required set the file for logging
    log = None
    if args.log_file:
        u.check_dir(args.log_file)
        log = args.log_file
        # If --clear_logs the log files are cleared
        clear_log_files([log])

    # basic pre-model step: creating or retrieving the source related info
    source, resume, csv_properties, fields = pms.get_source_info(
        api, args, resume, csv_properties, session_file, path, log)
    # basic pre-model step: creating or retrieving the dataset related info
    dataset_properties = pms.get_dataset_info(api, args, resume, source,
                                              csv_properties, fields,
                                              session_file, path, log)
    (_, datasets, test_dataset, resume, csv_properties,
     fields) = dataset_properties
    if args.cluster_file:
        # cluster is retrieved from the contents of the given local JSON file
        cluster, csv_properties, fields = u.read_local_resource(
            args.cluster_file, csv_properties=csv_properties)
        clusters = [cluster]
        cluster_ids = [cluster['resource']]
    else:
        # cluster is retrieved from the remote object
        clusters, cluster_ids, resume = pc.clusters_processing(
            datasets,
            clusters,
            cluster_ids,
            api,
            args,
            resume,
            fields=fields,
            session_file=session_file,
            path=path,
            log=log)
        if clusters:
            cluster = clusters[0]

    # We update the cluster's public state if needed
    if cluster:
        if isinstance(cluster, basestring):
            if args.cluster_datasets is None and not a.has_test(args):
                query_string = MINIMUM_MODEL
            else:
                query_string = ''
            cluster = u.check_resource(cluster,
                                       api.get_cluster,
                                       query_string=query_string)
        clusters[0] = cluster
        if (args.public_cluster or
            (args.shared_flag and r.shared_changed(args.shared, cluster))):
            cluster_args = {}
            if args.shared_flag and r.shared_changed(args.shared, cluster):
                cluster_args.update(shared=args.shared)
            if args.public_cluster:
                cluster_args.update(rcl.set_publish_cluster_args(args))
            if cluster_args:
                cluster = rcl.update_cluster(cluster,
                                             cluster_args,
                                             args,
                                             api=api,
                                             path=path,
                                             session_file=session_file)
                clusters[0] = cluster

    # We get the fields of the cluster if we haven't got
    # them yet and need them
    if cluster and (args.test_set or args.export_fields):
        if isinstance(cluster, dict):
            cluster = cluster['resource']
            cluster = u.check_resource(cluster,
                                       api.get_cluster,
                                       query_string=r.ALL_FIELDS_QS)
        fields = pc.get_cluster_fields(cluster, csv_properties, args)

    # If predicting
    if clusters and (a.has_test(args) or (test_dataset and args.remote)):
        if test_dataset is None:
            test_dataset = get_test_dataset(args)

        # Remote centroids: centroids are computed as batch centroids
        # in bigml.com except when --no-batch flag is set on
        if args.remote and not args.no_batch:
            # create test source from file
            test_name = "%s - test" % args.name
            if args.test_source is None:
                test_properties = ps.test_source_processing(
                    api,
                    args,
                    resume,
                    name=test_name,
                    session_file=session_file,
                    path=path,
                    log=log)
                (test_source, resume, csv_properties,
                 test_fields) = test_properties
            else:
                test_source_id = bigml.api.get_source_id(args.test_source)
                test_source = api.check_resource(test_source_id)
            if test_dataset is None:
                # create test dataset from test source
                dataset_args = set_basic_dataset_args(args, name=test_name)
                test_dataset, resume = pd.alternative_dataset_processing(
                    test_source,
                    "test",
                    dataset_args,
                    api,
                    args,
                    resume,
                    session_file=session_file,
                    path=path,
                    log=log)
            else:
                test_dataset_id = bigml.api.get_dataset_id(test_dataset)
                test_dataset = api.check_resource(test_dataset_id)
            test_fields = pd.get_fields_structure(test_dataset, csv_properties)
            batch_centroid_args = rbc.set_batch_centroid_args(
                args, fields=fields, dataset_fields=test_fields)

            remote_centroid(cluster,
                            test_dataset,
                            batch_centroid_args,
                            args,
                            api,
                            resume,
                            prediction_file=output,
                            session_file=session_file,
                            path=path,
                            log=log)

        else:
            centroid(clusters, fields, args, session_file=session_file)

    if cluster and args.cluster_datasets is not None:
        cluster = api.check_resource(cluster)
        centroids_info = cluster['object']['clusters']['clusters']
        centroids = {
            centroid['name']: centroid['id']
            for centroid in centroids_info
        }
        cluster_datasets = cluster['object']['cluster_datasets']
        if args.cluster_datasets == '':
            centroid_ids = centroids.values()
        else:
            centroid_ids = [
                centroids[cluster_name]
                for cluster_name in args.cluster_datasets_
                if cluster_datasets.get(centroids[cluster_name], '') == ''
            ]

        for centroid_id in centroid_ids:
            dataset_args = {'centroid': centroid_id}
            create_dataset(cluster,
                           dataset_args,
                           args,
                           api=api,
                           path=path,
                           session_file=session_file,
                           log=log,
                           dataset_type='cluster')

    if cluster and args.cluster_models is not None:
        cluster = api.check_resource(cluster)
        centroids_info = cluster['object']['clusters']['clusters']
        centroids = {
            centroid['name']: centroid['id']
            for centroid in centroids_info
        }
        models = cluster['object']['cluster_models']
        if args.cluster_models == '':
            centroid_ids = centroids.values()
        else:
            centroid_ids = [
                centroids[cluster_name]
                for cluster_name in args.cluster_models_
                if models.get(centroids[cluster_name], '') == ''
            ]

        for centroid_id in centroid_ids:
            model_args = {'centroid': centroid_id}
            create_model(cluster,
                         model_args,
                         args,
                         api=api,
                         path=path,
                         session_file=session_file,
                         log=log,
                         model_type='cluster')

    if fields and args.export_fields:
        fields.summary_csv(os.path.join(path, args.export_fields))

    u.print_generated_files(path,
                            log_file=session_file,
                            verbosity=args.verbosity)
    if args.reports:
        clear_reports(path)
        if args.upload:
            upload_reports(args.reports, path)
Ejemplo n.º 13
0
def compute_output(api, args):
    """ Creates one or more models using the `training_set` or uses the ids
    of previously created BigML models to make predictions for the `test_set`.

    """

    topic_model = None
    topic_models = None
    # no multi-label support at present

    # variables from command-line options
    resume = args.resume_
    topic_model_ids = args.topic_model_ids_
    output = args.predictions
    # there's only one topic model resource to be generated at present
    args.max_parallel_topic_models = 1
    # topic models cannot be published yet.
    args.public_topic_model = False

    # It is compulsory to have a description to publish either datasets or
    # topic models
    if (not args.description_
            and (args.public_topic_model or args.public_dataset)):
        sys.exit("You should provide a description to publish.")

    # When using --new-fields, it is compulsory to specify also a dataset
    # id
    if args.new_fields and not args.dataset:
        sys.exit("To use --new-fields you must also provide a dataset id"
                 " to generate the new dataset from it.")

    path = u.check_dir(output)
    session_file = u"%s%s%s" % (path, os.sep, SESSIONS_LOG)
    csv_properties = {}
    # If logging is required set the file for logging
    log = None
    if args.log_file:
        u.check_dir(args.log_file)
        log = args.log_file
        # If --clear_logs the log files are cleared
        clear_log_files([log])

    # basic pre-model step: creating or retrieving the source related info
    source, resume, csv_properties, fields = pms.get_source_info(
        api, args, resume, csv_properties, session_file, path, log)
    # basic pre-model step: creating or retrieving the dataset related info
    dataset_properties = pms.get_dataset_info(api, args, resume, source,
                                              csv_properties, fields,
                                              session_file, path, log)
    (_, datasets, test_dataset, resume, csv_properties,
     fields) = dataset_properties
    if args.topic_model_file:
        # topic model is retrieved from the contents of the given local JSON
        # file
        topic_model, csv_properties, fields = u.read_local_resource(
            args.topic_model_file, csv_properties=csv_properties)
        topic_models = [topic_model]
        topic_model_ids = [topic_model['resource']]
    else:
        # topic model is retrieved from the remote object
        topic_models, topic_model_ids, resume = pt.topic_model_processing(
            datasets,
            topic_models,
            topic_model_ids,
            api,
            args,
            resume,
            fields=fields,
            session_file=session_file,
            path=path,
            log=log)
        if topic_models:
            topic_model = topic_models[0]

    # We update the topic model's public state if needed
    if topic_model:
        if isinstance(topic_model, basestring):
            if not a.has_test(args):
                query_string = MINIMUM_MODEL
            else:
                query_string = ''
            topic_model = u.check_resource(topic_model,
                                           api.topic_model,
                                           query_string=query_string)
        topic_models[0] = topic_model
        if (args.public_topic_model or
            (args.shared_flag and r.shared_changed(args.shared, topic_model))):
            topic_model_args = {}
            if args.shared_flag and \
                    r.shared_changed(args.shared, topic_model):
                topic_model_args.update(shared=args.shared)
            if args.public_topic_model:
                topic_model_args.update(rtm.set_publish_topic_model_args(args))
            if topic_model_args:
                topic_model = rtm.update_topic_model( \
                    topic_model, topic_model_args, args,
                    api=api, path=path,
                    session_file=session_file)
                topic_models[0] = topic_model

    # We get the fields of the topic model if we haven't got
    # them yet and need them
    if topic_model and args.test_set:
        csv_properties.update({
            'objective_field_present': False,
            'objective_field': None
        })
        fields = pt.get_topic_model_fields(topic_model, csv_properties, args)

    # If predicting
    if topic_models and (a.has_test(args) or (test_dataset and args.remote)):
        if test_dataset is None:
            test_dataset = get_test_dataset(args)

        # Remote topic distributions:topic distributions are computed as
        # batch topic distributions
        # in bigml.com except when --no-batch flag is set.
        if args.remote and not args.no_batch:
            # create test source from file
            test_name = "%s - test" % args.name
            if args.test_source is None:
                test_properties = ps.test_source_processing(
                    api,
                    args,
                    resume,
                    name=test_name,
                    session_file=session_file,
                    path=path,
                    log=log)
                (test_source, resume, csv_properties,
                 test_fields) = test_properties
            else:
                test_source_id = bigml.api.get_source_id(args.test_source)
                test_source = api.check_resource(test_source_id)
            if test_dataset is None:
                # create test dataset from test source
                dataset_args = set_basic_dataset_args(args, name=test_name)
                test_dataset, resume = pd.alternative_dataset_processing(
                    test_source,
                    "test",
                    dataset_args,
                    api,
                    args,
                    resume,
                    session_file=session_file,
                    path=path,
                    log=log)
            else:
                test_dataset_id = bigml.api.get_dataset_id(test_dataset)
                test_dataset = api.check_resource(test_dataset_id)
            test_fields = pd.get_fields_structure(test_dataset, csv_properties)
            batch_topic_distribution_args = \
                rtd.set_batch_topic_distribution_args( \
                args, fields=fields, \
                dataset_fields=test_fields)

            remote_topic_distribution( \
                topic_model, test_dataset, batch_topic_distribution_args,
                args, api, resume, prediction_file=output,
                session_file=session_file, path=path, log=log)
        else:
            topic_distribution(topic_models,
                               fields,
                               args,
                               session_file=session_file)

    u.print_generated_files(path,
                            log_file=session_file,
                            verbosity=args.verbosity)
    if args.reports:
        clear_reports(path)
        if args.upload:
            upload_reports(args.reports, path)
Ejemplo n.º 14
0
def compute_output(api, args):
    """ Creates one or more models using the `training_set` or uses the ids
    of previously created BigML models to make predictions for the `test_set`.

    """

    time_series = None
    time_series_set = None

    # variables from command-line options
    resume = args.resume_
    time_series_ids = args.time_series_ids_
    output = args.predictions
    # there's only one time_series to be generated at present
    args.max_parallel_time_series = 1
    args.max_parallel_evaluations = 1
    # time_series cannot be published yet.
    args.public_time_series = False
    # no cross-validations
    args.dataset_off = False
    args.cross_validation_rate = 0
    args.number_of_evaluations = 1

    # It is compulsory to have a description to publish either datasets or
    # time_series
    if (not args.description_
            and (args.public_time_series or args.public_dataset)):
        sys.exit("You should provide a description to publish.")

    # When using --new-fields, it is compulsory to specify also a dataset
    # id
    if args.new_fields and not args.dataset:
        sys.exit("To use --new-fields you must also provide a dataset id"
                 " to generate the new dataset from it.")

    path = u.check_dir(output)
    session_file = u"%s%s%s" % (path, os.sep, SESSIONS_LOG)
    csv_properties = {}
    if args.objective_field:
        csv_properties.update({'objective_field': args.objective_field})
    # If logging is required set the file for logging
    log = None
    if args.log_file:
        u.check_dir(args.log_file)
        log = args.log_file
        # If --clear_logs the log files are cleared
        clear_log_files([log])

    # basic pre-model step: creating or retrieving the source related info
    source, resume, csv_properties, fields = pms.get_source_info(
        api, args, resume, csv_properties, session_file, path, log)
    # basic pre-model step: creating or retrieving the dataset related info
    dataset_properties = pms.get_dataset_info(api, args, resume, source,
                                              csv_properties, fields,
                                              session_file, path, log)
    (_, datasets, test_dataset, resume, csv_properties,
     fields) = dataset_properties
    if datasets:
        # Now we have a dataset, let's check if there's an objective_field
        # given by the user and update it in the fields structure
        args.objective_id_ = get_objective_id(args, fields)
        # if the time series is going to be evaluated, and we don't have
        # test data, we need to divide the rows using ranges, so we'll need
        # max rows
        args.max_rows = datasets[0]["object"]["rows"]
    if args.time_series_file:
        # time-series is retrieved from the contents of the given local
        # JSON file
        time_series, csv_properties, fields = u.read_local_resource(
            args.time_series_file, csv_properties=csv_properties)
        time_series_set = [time_series]
        time_series_ids = [time_series['resource']]
    else:
        # time-series is retrieved from the remote object
        time_series_set, time_series_ids, resume = \
            pts.time_series_processing( \
            datasets, time_series_set, time_series_ids, \
            api, args, resume, fields=fields, \
            session_file=session_file, path=path, log=log)
        if time_series_set:
            time_series = time_series_set[0]

    # We update the time-series' public state if needed
    if time_series:
        if isinstance(time_series, basestring):
            query_string = r.ALL_FIELDS_QS
            time_series = u.check_resource(time_series,
                                           api.get_time_series,
                                           query_string=query_string)
        time_series_set[0] = time_series
        if (args.public_time_series or
            (args.shared_flag and r.shared_changed(args.shared, time_series))):
            time_series_args = {}
            if args.shared_flag and r.shared_changed(args.shared, time_series):
                time_series_args.update(shared=args.shared)
            if args.public_time_series:
                time_series_args.update( \
                    rts.set_publish_time_series_args(args))
            if time_series_args:
                time_series = rts.update_time_series( \
                    time_series, time_series_args, args,
                    api=api, path=path, \
                    session_file=session_file)
                time_series_set[0] = time_series
    """
    # We get the fields of the time-series if we haven't got
    # them yet and need them
    if time_series and (args.test_set or args.export_fields):
        fields = pts.get_time_series_fields( \
            time_series, csv_properties, args)
    """

    if fields and args.export_fields:
        fields.summary_csv(os.path.join(path, args.export_fields))

    # If forecasting
    if time_series_set and a.has_ts_test(args):
        if args.remote:
            forecast_args = set_forecast_args(args, fields=fields)

            remote_forecast(time_series, forecast_args, args, \
                api, resume, \
                session_file=session_file, path=path, log=log)

        else:
            forecast(time_series, args, session_file=session_file)

    # If evaluate flag is on, create remote evaluation and save results in
    # json and human-readable format.
    if args.evaluate:
        # When we resume evaluation and models were already completed, we
        # should use the datasets array as test datasets
        if args.has_test_datasets_:
            test_dataset = get_test_dataset(args)
        if args.dataset_off and not args.has_test_datasets_:
            args.test_dataset_ids = datasets
        if args.test_dataset_ids and args.dataset_off:
            # Evaluate the models with the corresponding test datasets.
            test_dataset_id = bigml.api.get_dataset_id( \
                args.test_dataset_ids[0])
            test_dataset = api.check_resource(test_dataset_id)
            csv_properties.update(objective_field=None,
                                  objective_field_present=False)
            test_fields = pd.get_fields_structure(test_dataset, csv_properties)
            resume = evaluate(time_series_set,
                              args.test_dataset_ids,
                              api,
                              args,
                              resume,
                              fields=fields,
                              dataset_fields=test_fields,
                              session_file=session_file,
                              path=path,
                              log=log,
                              objective_field=args.objective_field)
        else:
            dataset = datasets[0]
            if args.test_split > 0 or args.has_test_datasets_:
                dataset = test_dataset
            else:
                args.range_ = [
                    int(args.max_rows * r.EVALUATE_SAMPLE_RATE), args.max_rows
                ]
            dataset = u.check_resource(dataset,
                                       api=api,
                                       query_string=r.ALL_FIELDS_QS)
            dataset_fields = pd.get_fields_structure(dataset, None)
            resume = evaluate(time_series_set, [dataset],
                              api,
                              args,
                              resume,
                              fields=fields,
                              dataset_fields=dataset_fields,
                              session_file=session_file,
                              path=path,
                              log=log)

    u.print_generated_files(path,
                            log_file=session_file,
                            verbosity=args.verbosity)
    if args.reports:
        clear_reports(path)
        if args.upload:
            upload_reports(args.reports, path)