Ejemplo n.º 1
0
class General:
    def __init__(self, is_it_for_real=False):
        self.iv_sec = {
            '1m': 60,
            '3m': 60 * 3,
            '5m': 60 * 5,
            '15m': 60 * 15,
            '30m': 60 * 30,
            '1h': 60 * 60,
            '2h': 60 * 60 * 2,
            '4h': 60 * 60 * 4,
            '8h': 60 * 60 * 8,
            '1d': 60 * 60 * 24,
            '3d': 60 * 60 * 24 * 3,
            '1w': 60 * 60 * 24 * 7
        }

        if is_it_for_real:
            from binance.client import Client
            self.client = Client("", "")

    def wait_till(self, interval, advance=0, skip_till=None):
        lag = self.client.get_server_time()['serverTime'] / 1000 - time.time(
        ) + 0.5  #taka kalibracja, żeby serwer otrzymał nasz request ułamek sekundy przed rządaną przez nas chwilą
        print('Lag: ', round(lag, 3))

        to_wait = (-time.time() - advance - lag) % self.iv_sec[interval]
        print(f"Candle ({interval}) closing in {round(to_wait,3)} seconds")
        if skip_till:
            if to_wait > skip_till:
                print("Skipping the wait")
                return to_wait

        time.sleep(to_wait)
        print(
            f"Server time: {datetime.fromtimestamp(self.client.get_server_time()['serverTime']/1000)}"
        )
        return 0

    def get_candles(self, symbol, interval, limit, market='spot'):
        if market == 'spot':
            candles = pd.DataFrame(
                self.client.get_klines(symbol=symbol + 'USDT',
                                       interval=interval,
                                       limit=limit + 1))
        elif market == 'future' or market == 'futures':
            candles = pd.DataFrame(
                self.client.futures_klines(symbol=symbol + 'USDT',
                                           interval=interval,
                                           limit=limit + 1))

        candles = candles[[0, 1, 2, 3, 4, 5]].astype(float)

        return candles
Ejemplo n.º 2
0
class MomentumStrategy:
    def __init__(self):
        self.client = Client(api_key=API_KEY, api_secret=API_SECRET)
        self.bsm_s = BinanceSocketManager(self.client)
        self.bsm_f = BinanceSocketManager(self.client)
        self.symbol = 'BTCUSDT'
        self.bet_size = 0.001
        self.interval = '15m'
        self.data_limit = 200
        self.lim1 = 0.3
        self.lim2 = 0.8
        self.last_signal = 0
        self.column_names = [
            'open_time', 'open', 'high', 'low', 'close', 'volume',
            'close_time', 'quote_asset_volume', 'number_of_trades',
            'taker_buy_base_asset_volume', 'taker_buy_quote_asset_volume',
            'ignore'
        ]
        self.position_open = False
        self.buy_position = False
        self.sell_position = False
        self.client.futures_change_leverage(symbol=self.symbol, leverage=10)

        self.conn_key_s = self.bsm_s.start_kline_socket(
            self.symbol, self.web_socket_handler, interval=self.interval)
        self.bsm_s.start()
        time.sleep(2)

    def web_socket_handler(self, data):
        self.is_kline_closed = data['k']['x']
        if self.is_kline_closed:
            self.calculate_signal()
            while self.last_signal == self.signal:
                self.calculate_signal()
            self.last_signal = self.signal
            print(self.signal)

            if not self.position_open:
                #open order because kline is closed - runs just the first time
                if self.signal >= self.lim1 and self.signal <= self.lim2:
                    self.position_open = True
                    self.buy_position = True
                    self.buy_bet_size = self.bet_size
                    self.client.futures_create_order(side='BUY',
                                                     quantity=self.bet_size,
                                                     symbol=self.symbol,
                                                     type='MARKET')

                elif self.signal <= -self.lim1 and self.signal >= -self.lim2:
                    self.position_open = True
                    self.sell_position = True
                    self.sell_bet_size = self.bet_size
                    self.client.futures_create_order(side='SELL',
                                                     quantity=self.bet_size,
                                                     symbol=self.symbol,
                                                     type='MARKET')

            #close positions if were open because kline is closed
            else:
                if self.buy_position:
                    self.position_open = False
                    self.buy_position = False

                    self.client.futures_create_order(
                        side='SELL',
                        quantity=self.buy_bet_size,
                        symbol=self.symbol,
                        type='MARKET')

                if self.sell_position:
                    self.position_open = False
                    self.sell_position = False

                    self.client.futures_create_order(
                        side='BUY',
                        quantity=self.sell_bet_size,
                        symbol=self.symbol,
                        type='MARKET')

                #open order because kline is closed
                if self.signal >= self.lim1 and self.signal <= self.lim2:
                    self.position_open = True
                    self.buy_position = True
                    self.buy_bet_size = self.bet_size
                    self.client.futures_create_order(side='BUY',
                                                     quantity=self.bet_size,
                                                     symbol=self.symbol,
                                                     type='MARKET')

                elif self.signal <= -self.lim1 and self.signal >= -self.lim2:
                    self.position_open = True
                    self.sell_position = True
                    self.sell_bet_size = self.bet_size
                    self.client.futures_create_order(side='SELL',
                                                     quantity=self.bet_size,
                                                     symbol=self.symbol,
                                                     type='MARKET')

    def futures_socket(self, data):
        pass
        # self.ask = float(data['data']['a'])
        # self.bid = float(data['data']['b'])
        # self.price = (self.ask + self.bid)/2

    def calculate_signal(self):
        df = self.client.futures_klines(symbol=self.symbol,
                                        interval=self.interval,
                                        limit=self.data_limit)

        df = pd.DataFrame(df, columns=self.column_names)
        df['close'] = pd.to_numeric(df['close'])
        nks = [4, 8, 16]
        nkl = [16, 24, 32]
        r1 = 12
        r2 = 168
        l = 198
        for i in range(3):
            df[f'ema_s_{i}'] = EMA(df['close'], window=nks[i]).ema_indicator()
            df[f'ema_l_{i}'] = EMA(df['close'], window=nkl[i]).ema_indicator()
            df[f'x{i}'] = df[f'ema_s_{i}'] - df[f'ema_l_{i}']
            df[f'y{i}'] = df[f'x{i}'] / np.std(df['close'][l - r1:l])
            df[f'z{i}'] = df[f'y{i}'] / np.std(df[f'y{i}'][l - r2:l])
            df[f'u{i}'] = (df[f'z{i}'] * np.exp(-(df[f'z{i}']**2) / 4)) / (
                np.sqrt(2) * np.exp(-1 / 2))
        df['signal'] = (df['u0'] + df['u1'] + df['u2']) / 3
        self.signal = df['signal'][l]

    def strategy(self):
        pass
Ejemplo n.º 3
0
client = Client(
    api_key=config.binance['public_key'],
    api_secret=config.binance['secret_key']
)

symbol_list = ['BATUSDT', 'XRPUSDT', 'ZILUSDT']

BATUSDT_candlesticks = []
XRPUSDT_candlesticks = []
ZILUSDT_candlesticks = []

for symbol in symbol_list:

    candlesticks = client.futures_klines(     
        symbol=symbol,
        interval=Client.KLINE_INTERVAL_1HOUR,
        start_str='Last 20 Days'
    )

    if symbol=='BATUSDT':

        for data in candlesticks:

            candlestick = {
                'time': round(data[0]/1000),
                'open': data[1],
                'high': data[2],
                'low': data[3],
                'close': data[4],
                'volume': data[5]
            }
Ejemplo n.º 4
0
from binance.client import Client
import pandas as pd
from pprint import pprint

cred = pd.read_csv("credentials.csv", index_col=0).loc["binance", :]
client = Client(cred.api_key, cred.secret_key)
SYMBOL = "BTCUSDT"

ticker = client.futures_ticker()
print(ticker)

klines = client.futures_klines(symbol=SYMBOL,
                               interval=Client.KLINE_INTERVAL_1DAY,
                               startTime=1546473600000,
                               endTime=1609632000000)
# print(len(klines))
# pprint(klines)

# [[1609459200000, '28948.19', '29668.86', '28627.12', '29337.16', '210716.398', 1609545599999, '6157505024.08511', 1511793, '101247.902', '2960175587.62208', '0'], [1609545600000, '29337.15', '33480.00', '28958.24', '32199.91', '545541.080', 1609631999999, '17122938614.70610', 3514545, '273388.463', '8578964529.70894', '0'], [1609632000000, '32198.41', '34832.25', '32000.02', '33054.53', '487486.989', 1609718399999, '16389111411.52760', 3325307, '238761.657', '8029365512.72767', '0']]

fund_rate = client.futures_funding_rate(symbol=SYMBOL,
                                        startTime=1568102400001,
                                        endTime=1612469148000,
                                        limit=1000)
#
print(len(fund_rate))
pprint(fund_rate)

# futures_klines랑 그냥 같은 데이터 같음
continous_fut = client.futures_continous_klines(
    pair=SYMBOL,
def get_futures_historical_klines(symbol, interval, start_str, end_str=None):
    """Get Historical Klines from Binance
    See dateparse docs for valid start and end string formats http://dateparser.readthedocs.io/en/latest/
    If using offset strings for dates add "UTC" to date string e.g. "now UTC", "11 hours ago UTC"
    :param symbol: Name of symbol pair e.g BNBBTC
    :type symbol: str
    :param interval: Biannce Kline interval
    :type interval: str
    :param start_str: Start date string in UTC format
    :type start_str: str
    :param end_str: optional - end date string in UTC format
    :type end_str: str
    :return: list of OHLCV values
    """
    # create the Binance client, no need for api key
    client = Client("", "")

    # init our list
    output_data = []

    # setup the max limit
    limit = 500

    # convert interval to useful value in seconds
    timeframe = interval_to_milliseconds(interval)

    # convert our date strings to milliseconds
    start_ts = date_to_milliseconds(start_str)

    # if an end time was passed convert it
    end_ts = None
    if end_str:
        end_ts = date_to_milliseconds(end_str)

    idx = 0
    # it can be difficult to know when a symbol was listed on Binance so allow start time to be before list date
    symbol_existed = False
    while True:
        # fetch the klines from start_ts up to max 500 entries or the end_ts if set
        temp_data = client.futures_klines(symbol=symbol,
                                          interval=interval,
                                          limit=limit,
                                          startTime=start_ts,
                                          endTime=end_ts)

        # handle the case where our start date is before the symbol pair listed on Binance
        if not symbol_existed and len(temp_data):
            symbol_existed = True

        if symbol_existed:
            # append this loops data to our output data
            output_data += temp_data

            # update our start timestamp using the last value in the array and add the interval timeframe
            start_ts = temp_data[len(temp_data) - 1][0] + timeframe
        else:
            # it wasn't listed yet, increment our start date
            start_ts += timeframe

        idx += 1
        # check if we received less than the required limit and exit the loop
        if len(temp_data) < limit:
            # exit the while loop
            break

        # sleep after every 3rd call to be kind to the API
        if idx % 3 == 0:
            time.sleep(1)

    return output_data
Ejemplo n.º 6
0
class Trader():
    """
    Purpose is to trade live on the Binance Crypto Exchange

    Attributes
    -----------
    symbol: str
    client: Client object - From binance.py
    capital: float - represents how much money is in account
    leverage: float - how many multiples of your money you want to trade
    tf: int - timeframe
    df: pd.DataFrame - data that will be analyzed.
    Methods
    ----------
    load_account
    set_leverage
    set_timeframe
    get_position
    get_necessary_data
    set_asset
    make_row
    load_existing_asset
    start_trading

    Please look at each method for descriptions
    """
    def __init__(self):
        self.start = False
        self.client = None
        self.capital = None
        self.leverage = 1 / 1000
        self.tf = None
        self.symbol = None
        self.loader = _DataLoader()
        self.df = None

    def check_status(self) -> bool:
        """
        Reads a txt file to see whether user wants trading to be on or off
        :return boolean of True or False. True means trading is on, and false means it is off.
        """
        local_path = os.path.dirname(
            os.path.dirname(
                os.path.abspath("__file__"))) + r"\local\trade_status.txt"
        status = pd.read_csv(local_path).set_index('index')
        self.start = bool(status.loc[0, 'status'])

    def load_account(self, additional_balance: int = 20000) -> str:
        """
        Sign in to account using API_KEY and using Binance API
        """
        local_path = os.path.dirname(
            os.path.dirname(
                os.path.abspath("__file__"))) + r"\local\binance_api.txt"
        info = pd.read_csv(local_path).set_index('Name')
        API_KEY = info.loc["API_KEY", "Key"]
        SECRET = info.loc["SECRET", "Key"]
        self.client = Client(API_KEY, SECRET)
        # Initializing how much money I have on the exchange. Sample 20000 has been added.
        self.capital = int(
            float(self.client.futures_account_balance()[0]
                  ['balance'])) + additional_balance
        return "Welcome Haseab"

    def set_leverage(self, leverage: float) -> float:
        """Sets the current leverage of the account: should normally be 1. And 0.001 for testing purposes"""
        self.leverage = leverage
        return self.leverage

    def set_timeframe(self, tf: int) -> int:
        """Sets the timeframe of the trading data"""
        self.tf = tf
        return self.tf

    def get_necessary_data(self, symbol: str, tf: int,
                           max_candles_needed: int) -> pd.DataFrame:
        """
        Gets the minimum necessary data to trade this asset. Only a symbol and timeframe need to be inputted

        Note: This method is used as a way to tackle the 1000 candle limit that is currently on the Binance API.
        A discrete set of ~1000 group candles will be determined, and then the data will be extracted from each,
        using the _get_binance_futures_candles method, and then all of them will be merged together.

        Parameters:
        symbol: str             - Symbol of price ticker   Ex. "BTCUSDT", "ETHUSDT"
        tf: int                 - Timeframe wanted   Ex. 1, 3, 5, 77, 100
        max_candles_needed: int - Maximum candles needed in the desired timeframe     Ex. 231, 770, 1440

        :return pd.DataFrame of candlestick data

        """
        now = time.time()
        df = pd.DataFrame()
        ranges = Helper.determine_candle_positions(max_candles_needed, tf)

        # Grabbing each set of about 1000 candles and appending them one after the other
        for i in range(len(ranges)):
            try:
                df = df.append(
                    self.loader._get_binance_futures_candles(
                        symbol, int(ranges[i]), int(ranges[i + 1]), now))
            except IndexError:
                pass
        return df.drop_duplicates()

    def _update_data(
        self,
        diff: int,
        symbol: str,
    ) -> None:
        """
        Used to update the trading data with the exchange data so that it is real time

        Parameters:
        -----------
        diff: a number that explains how many minutes of disparity there is between current data and live data.

        :return dataframe with the most up-to-date data.
        """
        # Calculating how many minutes to fetch from API
        minutes = math.floor(diff) + 1

        # Getting minute candlestick data. Number of minute candlesticks represented by "minutes" variable
        last_price = self.loader._get_binance_futures_candles(symbol, minutes)
        # Adding a legible Datetime column and using the timestamp data to obtain datetime data
        last_price['Datetime'] = [
            datetime.fromtimestamp(i / 1000) for i in last_price.index
        ]
        last_price = last_price[[
            "Datetime", "Open", "High", "Low", "Close", "Volume"
        ]]

        # Abstracting minute data into appropriate tf
        last_price = self.loader._timeframe_setter(last_price, self.tf, 0)

        # Updating original data with new data.
        self.df = self.df.append(last_price).drop_duplicates()

    def get_position(self, symbol: str) -> float:
        """
        Gets the total amount of current position for a given symbol
        Parameters:
        ------------
        symbol: str
            Ex. "BTCUSDT"
                "ETHUSDT"

        Returns float
            Ex. If a 1.000 BTC position is open, it will return 1.0
        """
        return float([
            i["positionAmt"]
            for i in self.client.futures_position_information()
            if i['symbol'] == symbol
        ][0])

    def set_asset(self, symbol: str, tf: int) -> str:
        """
        Set Symbol of the ticker and load the necessary data with the given timeframe to trade it

        Parameters:
        ------------
        symbol: str     Ex. "BTCUSDT", "ETHUSDT"

        :return str response
        """
        self.symbol = symbol
        max_candles_needed = 231

        # For Binance API purposes, 240 min needs to be inputted as "4h" on binance when fetching data
        map_tf = {
            1: "1m",
            3: "3m",
            5: "5m",
            15: "15m",
            30: "30m",
            60: "1h",
            120: "2h",
            240: "4h",
            360: "6h",
            480: "8h"
        }

        start_time = int((time.time() - self.tf * 235 * 60) * 1000)

        if tf in [1, 3, 5, 15, 30, 60, 120, 240, 360,
                  480]:  # Note: 12H, 1D, 3D, 1W, 1M are also recognized

            # Fetching data from Binance if it matches the eligible timeframe, as it will be faster
            df = Helper.into_dataframe(
                self.client.futures_klines(symbol=symbol,
                                           interval=map_tf[tf],
                                           startTime=start_time))
            df.drop(df.tail(1).index, inplace=True)

        else:
            # If it doesn't match Binance available timeframes, it must be transformed after fetching 1m data.
            df = self.get_necessary_data(symbol, tf, max_candles_needed)
            df = self.loader._timeframe_setter(df, tf)

        # Adding Datetime column for readability of the timestamp. Also more formatting done
        df['Datetime'] = [datetime.fromtimestamp(i / 1000) for i in df.index]
        df = df[["Datetime", "Open", "High", "Low", "Close", "Volume"]]
        df[["Open", "High", "Low", "Close",
            "Volume"]] = df[["Open", "High", "Low", "Close",
                             "Volume"]].astype(float)

        self.df = df

        return f"Symbol changed to {self.symbol}"

    def make_row(
            self,
            high=[],
            low=[],
            volume=[],
            count: int = 0,
            open_price: float = None,
            open_date: str = None
    ) -> (pd.DataFrame, list, list, list, list, list):
        """
        Helper function used to update the last row of a dataframe, using all of the data in the previous "last row" as input.
        This is used to update the price of the candlestick live, with the incomplete current candle constantly updating.

        Parameters:
        -----------
        high:       list        Ex. [23348, 23350, 23335, 23330, 23339]
        low:        list        Ex. [23300, 23345, 23335, 23320, 23300]
        volume:     list        Ex. [47, 31, 110, 117, 2, 55]
        count:      int         Ex. 1,2,3
        open_price: float       Ex. 23342
        open_date:  str         Ex. "2020-08-04 17:33:02"

        Returns tuple -> (pd.DataFrame, list, list, list, list, list)
        """
        # row variable gets a pd.DataFrame of size 1.
        row = self.loader._get_binance_futures_candles("BTCUSDT",
                                                       1).reset_index()
        timestamp = row.loc[0, "Timestamp"]
        close = float(row.loc[0, "Close"])
        high.append(float(row.loc[0, "High"]))
        low.append(float(row.loc[0, "Low"]))
        volume.append(float(row.loc[0, "Volume"]))

        # Initial values of a candle that only get set on the first iteration.
        if count == 0:
            open_price = row.loc[0, "Open"]
            open_date = timestamp

        # Adding to previous candlestick data of the last row by updating the row.
        dfrow = pd.DataFrame([[
            open_date,
            datetime.fromtimestamp(open_date / 1000), open_price,
            max(high),
            min(low), close,
            sum(volume)
        ]],
                             columns=[
                                 "Timestamp", "Datetime", "Open", "High",
                                 "Low", "Close", "Volume"
                             ])

        dfrow[["Open", "High", "Low", "Close",
               "Volume"]] = dfrow[["Open", "High", "Low", "Close",
                                   "Volume"]].astype(float)
        dfrow = dfrow.set_index("Timestamp")

        return dfrow, high, low, volume, open_price, open_date

    def load__existing_asset(self, df: pd.DataFrame) -> pd.DataFrame:
        """Sets the trading data to an already existing dataframe, passed in as an argument"""
        self.df = df
        return self.df

    def start_trading(self,
                      strategy: FabStrategy,
                      executor,
                      tf: int,
                      sensitivity=0,
                      debug=False) -> str:
        """
        Starts the process of trading live. Each minute, the last row of the data is updated and Rule #2 is checked,
        otherwise, it waits till the end of the timeframe where it gets the latest data before it checks the rest of the rules.
        If it does see something following the rules, it will buy/short, given the initial parameters it has. (e.g. leverage, quantity)
        This process continues indefinetly, unless interrupted.

        Returns None.
        """
        count, open_price = 0, 0
        open_date = None
        high, low, volume = [], [], []

        # Loading data into strategy, and creating moving averages.
        strategy.load_data(self.df)
        strategy.create_objects()

        # Checking to see whether trading is on or off. If it is off then it will not enter while loop.
        self.check_status()

        while self.start != False:
            diff = Helper.calculate_minute_disparity(self.df, tf)
            if round(time.time() % 60, 1) == 0 and diff <= tf:

                # Getting the most up-to-date row of the <tf>-min candlestick
                dfrow, high, low, volume, open_price, open_date = self.make_row(
                    high, low, volume, count, open_price, open_date)

                if debug == True:
                    print(dfrow)
                    print(f"{tf - diff} minutes left")

                # Updating moving averages
                strategy.load_data(self.df.append(dfrow))
                strategy.create_objects()

                # Checking only Rule 2, because it needs a minute by minute check.
                # Second condition is making sure that there is no existing position
                if strategy.rule_2_buy_enter(
                        -1, sensitivity) and self.get_position(
                            self.symbol) == 0:
                    trade_info = executor.enter_market(self.symbol, "BUY", 2)
                elif strategy.rule_2_short_enter(
                        -1, sensitivity) and self.get_position(
                            self.symbol) == 0:
                    trade_info = executor.enter_market(self.symbol, "SELL", 2)

                # Saves CPU usage, waits 5 seconds before the next minute
                time.sleep(50)

                count += 1

            elif diff > tf:
                # Updating data using Binance API instead of appending the completed final row from the while loop
                self._update_data(math.floor(diff), "BTCUSDT")

                # Updating Moving averages
                strategy.load_data(self.df)
                strategy.create_objects()

                # Checks for the rest of the rules
                if strategy.rule_2_short_stop(-1) and self.get_position(self.symbol) < 0 and \
                        executor.live_trade_history.last_trade().rule == 2:
                    trade_info = executor.exit_market(
                        self.symbol, 2, self.get_position(self.symbol))
                elif strategy.rule_2_buy_stop(-1) and self.get_position(self.symbol) > 0 and \
                        executor.live_trade_history.last_trade().rule == 2:
                    trade_info = executor.exit_market(
                        self.symbol, 2, self.get_position(self.symbol))
                elif strategy.rule_1_buy_enter(-1) and self.get_position(
                        self.symbol) == 0:
                    trade_info = executor.enter_market(self.symbol, "BUY", 1)
                elif strategy.rule_1_buy_exit(-1) and self.get_position(
                        self.symbol) > 0:
                    trade_info = executor.exit_market(
                        self.symbol, 1, self.get_position(self.symbol))
                elif strategy.rule_1_short_enter(-1) and self.get_position(
                        self.symbol) == 0:
                    trade_info = executor.enter_market(self.symbol, "SELL", 1)
                elif strategy.rule_1_short_exit(-1) and self.get_position(
                        self.symbol) < 0:
                    trade_info = executor.exit_market(
                        self.symbol, 1, self.get_position(self.symbol))
                elif strategy.rule_3_buy_enter(-1) and self.get_position(
                        self.symbol) == 0:
                    trade_info = executor.enter_market(self.symbol, "BUY", 3)
                elif strategy.rule_3_short_enter(-1) and self.get_position(
                        self.symbol) == 0:
                    trade_info = executor.enter_market(self.symbol, "SELL", 3)

                    # Resetting candlesticks
                high, low, volume = [], [], []
                count = 0
                time.sleep(1)

                if debug == True:
                    print(diff)
                    print("next")
            self.check_status()

        return "Trading Stopped"
Ejemplo n.º 7
0
class BinanceManager:
    def __init__(self, api_key=None, secret_key=None):
        # Binance API Client
        self.client = Client(api_key, secret_key)
        # Binance API websocket
        self.socket = BinanceSocketManager(self.client)
        # Panda dataFrame
        self.df = None
        # Trading asset
        self.symbol = None
        # Interval
        self.interval = None
        # Logger
        self.logger = Logger()
        # File to save data
        self.filename = None

    def start(self, symbol, interval, startTime=None, filename="data.csv"):
        self.logger.success("Manager start")
        self.symbol = symbol
        self.interval = interval
        self.filename = filename
        self.get_historical_klines(self.symbol, interval, startTime)
        self.logger.success("Socket start")
        self.socket.start()
        self.logger.success("Socket kline start")
        self.socket.start_kline_socket(self.symbol,
                                       self.klines_callback,
                                       interval=self.interval)
        return self

    def get_historical_klines(self,
                              symbol="btcusdt",
                              interval="1h",
                              startTime=None,
                              endTime=None,
                              limit=500):
        self.logger.info("Get historical klines")
        # fetch klines
        data = self.client.futures_klines(symbol=symbol,
                                          interval=interval,
                                          startTime=startTime,
                                          endTime=endTime,
                                          limit=limit)
        # Keep only the first 6 columns
        data = np.array(data)[:, 0:6]
        # Create a DataFrame with annotated columns
        df = pd.DataFrame(
            data, columns=["Date", "Open", "High", "Low", "Close", "Volume"])
        # Convert Date from ms to Datetime
        df["Date"] = pd.to_datetime(df["Date"], unit="ms")
        # Convert columns to numeric values
        df["Open"] = pd.to_numeric(df["Open"], errors="coerce")
        df["High"] = pd.to_numeric(df["High"], errors="coerce")
        df["Low"] = pd.to_numeric(df["Low"], errors="coerce")
        df["Close"] = pd.to_numeric(df["Close"], errors="coerce")
        df["Volume"] = pd.to_numeric(df["Volume"], errors="coerce")
        # Set Date column as index
        df.set_index("Date", inplace=True)
        self.df = df
        self.write()
        return df

    def klines_callback(self, msg):
        self.logger.info("Websocket: Updating last kline")
        if msg['e'] == 'error':
            print("[!] ERROR: Klines websocket does not work.")
            return self

        # [Kline start time, Open price, High price, Low price, Close price, Base asset volume
        kline = np.array([
            msg['k']['t'], msg['k']['o'], msg['k']['h'], msg['k']['l'],
            msg['k']['c'], msg['k']['v']
        ])
        # Create a Tableau with annotated columns
        df = pd.DataFrame(
            [kline],
            columns=["Date", "Open", "High", "Low", "Close", "Volume"])
        # Convert Date from ms to Datetime
        df["Date"] = pd.to_datetime(df["Date"], unit="ms")
        # Convert columns to numeric values
        df["Open"] = pd.to_numeric(df["Open"], errors="coerce")
        df["High"] = pd.to_numeric(df["High"], errors="coerce")
        df["Low"] = pd.to_numeric(df["Low"], errors="coerce")
        df["Close"] = pd.to_numeric(df["Close"], errors="coerce")
        df["Volume"] = pd.to_numeric(df["Volume"], errors="coerce")
        df.set_index("Date", inplace=True)
        # If is not a new kline
        if self.df.last_valid_index() == df.last_valid_index():
            # Update last kline value
            self.df.drop(self.df.last_valid_index(), inplace=True)
        # Append df to main df
        self.df = self.df.append(df, ignore_index=False)
        # Update data
        self.write()
        return self

    def write(self):
        if self.filename is not None:
            lock = FileLock(self.filename + '.lock')
            with lock:
                self.df.to_csv(self.filename)

    def stop(self):
        self.logger.success("Manager stop")
        self.socket.close()
        return self
Ejemplo n.º 8
0
class _DataLoader:
    """
    Private class Responsible for all ETL related tasks. Loads data from csv, fetches data from Binance API.

    Attributes
    -----------
    client: Client object which is the Binance API Python wrapper

    Methods
    ------------
    _load_csv
    _get_range
    _get_binance_futures_candles
    _timeframe_setter

    Please look at each method for descriptions
    """
    def __init__(self):
        self.client = Client()

    def _load_csv(self, csv_url: str) -> pd.DataFrame:
        """Function used to load 1-minute historical candlestick data with a given csv url
            The important columns are the ones that create the candlestick (open, high, low, close) """
        # Reading CSV File containing 1 min candlestick data
        data = pd.read_csv(csv_url, index_col='Timestamp')
        # Converting Timestamp numbers into a new column of readable dates
        data['Datetime'] = [datetime.fromtimestamp(i) for i in data.index]
        data[["Open", "High", "Low", "Close",
              "Volume"]] = data[["Open", "High", "Low", "Close",
                                 "Volume"]].astype(float)
        data = data[['Datetime', 'Open', 'High', 'Low', 'Close', 'Volume']]
        return data

    def _get_binance_futures_candles(self,
                                     symbol: str,
                                     start_minutes_ago: int,
                                     end_minutes_ago: int = 0,
                                     now: float = None) -> pd.DataFrame:
        """
        Provides a method for getting a set of candlestick data without inputting start and end date.

        Ex. _get_binance_futures_candles("BTCUSDT", 5, 3) = get candlestick data from 5 minutes ago to 3 minutes ago.

        Parameters:
        -----------
        symbol: str              Ex. "BTCUSDT", "ETHUSDT"
        start_minutes_ago: int   Ex. 1, 5, 1000
        end_minutes_ago: int     Ex. 1, 5, 1000

        :return pd.DataFrame of candlestick data.
        """
        if now == None:
            now = time.time()

        seconds_in_a_minute = 60
        # Multiplies second timestamp to turn into millisecond timestamp (which binance uses)
        timestamp_adjust = 1000

        # Defining params to put in exchange API call
        startTime = (int(now) - seconds_in_a_minute * (start_minutes_ago) -
                     1) * timestamp_adjust  # Ex. 1609549634 -> in seconds
        endTime = int(now -
                      seconds_in_a_minute * end_minutes_ago) * timestamp_adjust
        limit = abs(start_minutes_ago - end_minutes_ago)

        data = self.client.futures_klines(symbol=symbol,
                                          interval="1m",
                                          startTime=startTime,
                                          endTime=endTime,
                                          limit=limit)
        return Helper.into_dataframe(data)

    def _get_range(self,
                   dataframe: pd.DataFrame,
                   start_date: str = None,
                   end_date: str = None) -> pd.DataFrame:
        """Returns the range of 1-min data within specified start & end date from the entire dataset

            Parameters
            ----------
            dataframe: pd.DataFrame object with a Timestamp as its index
            start_date: date in the format of YYYY-MM-DD format
            end_date: date in the format of YYYY-MM-DD format

            :return dataframe
        """
        if start_date == None or end_date == None:
            raise Exception("No Start date given")

        start_date = int(
            time.mktime(datetime.strptime(start_date, "%Y-%m-%d").timetuple()))
        end_date = int(
            time.mktime(datetime.strptime(end_date, "%Y-%m-%d").timetuple()))
        return dataframe.loc[start_date:end_date]

    def _timeframe_setter(self,
                          dataframe: pd.DataFrame,
                          tf: int,
                          shift: int = None) -> pd.DataFrame:
        """ Vertical way of abstracting data
        Converts minute candlestick data into the timeframe(tf) of choice.
        Parameters
        -----------
        dataframe: the dataframe that is being passed as an argument

        tf: The combination of 1-min candles into one value. Number of 1-min candles combined
                is the timeframe value itself.
                The raw data is in a 1-min timeframe. Dataframe contains the following
                columns: ['Open', 'High', 'Low, 'Close']. Converting to a X minute timeframe is
                handled differently for every column of the candlestick:

            Close - Since all that matters is the close value every 'tf' minutes, you can skip
                every 'tf' minutes.
                Ex.
                    df['Close'] = pd.Series([4.50, 4.60, 4.65, 4.44, 4.21, 4.54, 4.10])
                    _timeframe_setter(df['Close'], 2) -> [4.50, 4.65, 4.21, 4.10]
                    _timeframe_setter(df['Close'], 3) -> [[4.50, 4.44, 4.10]

            Open - Same rules as Close

            High - Get the maximum 1-min high value given the range of the timeframe
                 Ex.
                     df['Close'] = pd.Series([4.50, 4.60, 4.65, 4.44, 4.21, 4.54, 4.10])
                    _timeframe_setter(df['High'], 2) ->  [4.60, 4.65, 4.44, 4.54]
                    _timeframe_setter(df['High'], 3) ->  [4.65, 4.54]

            Low - Same rules as 'High', but instead the minimum of that range

            Volume - Same rules as "High", but instead the sum of that range

        If the range of tf is not even (such as having a tf=2 but only 5 elements), then the
        last value will be dropped

        :return dataframe
        """
        if shift == None:
            # This is making sure that there it shifts so that the last tf candle includes the last 1-minute candle
            shift = tf - len(dataframe) % tf - 1

        dataframe[["Open", "High", "Low", "Close", "Volume"
                   ]] = dataframe[["Open", "High", "Low", "Close",
                                   "Volume"]].astype(float)

        # Creating a new dataframe so that the size of the rows of the new dataframe will be the same as the new columns
        df = dataframe.iloc[shift::tf].copy()

        # Iterating through candle data, and abstracting based on the highest, lowest and sum respectively.
        df['High'] = [
            max(dataframe['High'][i:tf + i])
            for i in range(shift, len(dataframe['High']), tf)
        ]
        df['Low'] = [
            min(dataframe['Low'][i:tf + i])
            for i in range(shift, len(dataframe['Low']), tf)
        ]
        df['Volume'] = [
            sum(dataframe['Volume'][i:tf + i])
            for i in range(shift, len(dataframe['Volume']), tf)
        ]

        # Selecting every nth value in the list, where n is the timeframe
        df['Close'] = [
            dataframe['Close'].iloc[i:tf + i].iloc[-1]
            for i in range(shift, len(dataframe['Close']), tf)
        ]

        # Dropping the last value, this gets rid of the candle that isn't complete until the end of the tf
        df.drop(df.tail(1).index, inplace=True)

        return df

    def _timeframe_setter_v2(self,
                             df_raw: pd.DataFrame,
                             tf: int,
                             shift: int = None) -> pd.DataFrame:
        """
        WORK IN PROGRESS - Horizontal way of abstracting the data

        This way of abstracting data actually takes longer and more time, however it allows for
        complex cases in which not all data needs to have the same timeframe.

        """

        if shift == None:
            # This is making sure that there it shifts so that the last tf candle includes the last 1-minute candle
            shift = tf - len(df_raw) % tf - 1

        tf = 77
        count = 0
        low, high = shift, shift + tf
        df2 = df_raw.copy().head(0)
        hi_df = df_raw.loc[:, "High"]
        lo_df = df_raw.loc[:, "Low"]
        while count < 1000:
            df2 = df2.append(
                {
                    "Datetime": df_raw.iloc[0, 0],
                    "Open": df_raw.iloc[0, 1],
                    "High": max(hi_df[low:high]),
                    "Low": min(lo_df[low:high]),
                    "Close": df_raw.iloc[-1, 4]
                },
                ignore_index=True)
            low += 77
            high += 77
            count += 1

        return df2
Ejemplo n.º 9
0
class _DataLoader:
    """
    Private class Responsible for all ETL related tasks. Loads data from csv, fetches data from Binance API.

    Attributes
    -----------
    binance: Client object which is the Binance API Python wrapper

    Methods
    ------------
    _load_csv
    _get_range
    _get_binance_futures_candles
    _timeframe_setter

    Please look at each method for descriptions
    """
    SECOND_TO_MILLISECOND = 1000

    def __init__(self, db=False, qtrade=False, ib=False):
        self.sql = SqlMapper()
        self.ib = IB()
        self.binance = Client()
        if qtrade:
            self.qtrade = Questrade(
                token_yaml=
                'C:/Users/haseab/Desktop/Python/PycharmProjects/FAB/local/Workers/access_token.yml',
                save_yaml=True)
            print('Connected to Questrade API')
        if db:
            self.conn = self.sql.connect_psql()
        if ib:
            print(self.ib.connect('127.0.0.1', 7496, 104))

    def load_db_data(self, symbol, conns, chunks=3):
        results = []
        resp_df = self.sql.SELECT(
            f"explain select * from candlesticks where symbol = '{symbol}'",
            show_select=False,
            cursor=conns[0].cursor())
        table_row_count = int(
            resp_df.loc[0, 'QUERY PLAN'].split(' ')[-2].strip("rows="))
        limit = table_row_count // chunks

        with ThreadPoolExecutor(max_workers=3) as executor:
            for chunk, conn in zip(range(0, table_row_count, limit), conns):
                print('start')
                cursor = conn.cursor()
                results.append(
                    executor.submit(
                        self.sql.SELECT,
                        f"* FROM candlesticks WHERE SYMBOL = '{symbol}' AND TF = '1' LIMIT {limit} OFFSET {chunk}",
                        cursor))
                print('done')
            executor.shutdown(wait=True)
        return results

    def _randomly_delete_rows(self, df, percentage_of_data=0.10):
        index_list = []
        for _ in range(len(df) // (1 / percentage_of_data)):
            index = random.choice(df.index)
            if index not in index_list:
                index_list.append(index)

        return df.drop(index_list)

    def _clean_1m_data(self, df):
        start_date = df['timestamp'].iloc[0]
        end_date = df['timestamp'].iloc[-1]

        full_timestamps = pd.DataFrame(
            [time for time in range(start_date, end_date + 60, 60)],
            columns=['timestamp'])
        full_df = full_timestamps.merge(df.reset_index(),
                                        on='timestamp',
                                        how='left')
        full_df['volume'] = full_df['volume'].fillna(0.001)
        filled_df = full_df.fillna(method='ffill')
        filled_df['date'] = [
            datetime.fromtimestamp(timestamp)
            for timestamp in filled_df['timestamp'].values
        ]
        return filled_df

    def _load_csv_v2(self, csv_url):
        tf = csv_url.split(' ')[2][:-1]
        symbol = csv_url.split(' ')[1]

        data = pd.read_csv(csv_url)
        data['timestamp'] = [
            int(timestamp / 1000) for timestamp in data['timestamp']
        ]
        data['date'] = [
            datetime.fromtimestamp(timestamp)
            for timestamp in data['timestamp'].values
        ]
        data['tf'] = [tf] * len(data)
        data['symbol'] = [symbol] * len(data)

        data[["open", "high", "low", "close",
              "volume"]] = data[["open", "high", "low", "close",
                                 "volume"]].astype(float)

        data = data[[
            'symbol', 'tf', 'timestamp', 'date', 'open', 'high', 'low',
            'close', 'volume'
        ]]
        return data.set_index(["symbol", "tf", "timestamp"])

    def _load_csv(self, csv_url: str) -> pd.DataFrame:
        """Function used to load 1-minute historical candlestick data with a given csv url
            The important columns are the ones that create the candlestick (open, high, low, close) """
        # Reading CSV File containing 1 min candlestick data
        data = pd.read_csv(csv_url, index_col='timestamp')
        # Converting Timestamp numbers into a new column of readable dates
        data['date'] = [
            datetime.fromtimestamp(timestamp) for timestamp in data.index
        ]
        data[["open", "high", "low", "close",
              "volume"]] = data[["open", "high", "low", "close",
                                 "volume"]].astype(float)
        data = data[['date', 'open', 'high', 'low', 'close', 'volume']]
        return data

    def _get_binance_futures_candles(self,
                                     symbol: str,
                                     tf: int,
                                     start_candles_ago: int,
                                     end_candles_ago: int = 0,
                                     now: float = None) -> pd.DataFrame:
        """
        Provides a method for getting a set of candlestick data without inputting start and end date.

        Ex. _get_binance_futures_candles("BTCUSDT", 5, 3) = get candlestick data from 5 minutes ago to 3 minutes ago.

        Parameters:
        -----------
        symbol: str              Ex. "BTCUSDT", "ETHUSDT"
        start_minutes_ago: int   Ex. 1, 5, 1000
        end_minutes_ago: int     Ex. 1, 5, 1000

        :return pd.DataFrame of candlestick data.
        """
        if now == None:
            now = time.time()

        # Defining params to put in exchange API call
        map_tf = {
            1: "1m",
            3: "3m",
            5: "5m",
            15: "15m",
            30: "30m",
            60: "1h",
            120: "2h",
            240: "4h",
            360: "6h",
            480: "8h"
        }
        start_minutes_ago = start_candles_ago * tf
        end_minutes_ago = end_candles_ago * tf

        start_time = Helper().minutes_ago_to_timestamp(
            start_minutes_ago, now, adjust=self.SECOND_TO_MILLISECOND)
        end_time = Helper().minutes_ago_to_timestamp(
            end_minutes_ago, now, adjust=self.SECOND_TO_MILLISECOND)
        num_candles = abs(start_candles_ago - end_candles_ago)

        data = self.binance.futures_klines(symbol=symbol,
                                           interval=map_tf[tf],
                                           startTime=start_time,
                                           endTime=end_time,
                                           limit=num_candles)

        return Helper.into_dataframe(data, symbol=symbol, tf=tf, index=False)

    def load_finviz_data():
        import pandas as pd
        from finviz.screener import Screener

        filters_nyse = ['exch_nyse'
                        ]  # Shows companies in NASDAQ which are in the S&P500
        stock_list_nyse = Screener(
            filters=filters_nyse, table='Ownership', order='Market Cap'
        )  # Get the performance table and sort it by price ascending

        filters_nasdaq = ['exch_nasd']
        stock_list_nasd = Screener(
            filters=filters_nasdaq, table='Ownership', order='Market Cap'
        )  # Get the performance table and sort it by price ascending

        nasdaq_df = pd.DataFrame(stock_list_nasd.data).drop('No.', axis=1)
        nyse_df = pd.DataFrame(stock_list_nyse.data).drop('No.', axis=1)

        df = nyse_df.append(nasdaq_df).reset_index(drop=True)

        df.to_csv('finviz_stocks.csv', index=False)
        return df

    def _get_ibkr_stocks_candles(self, symbol: str, tf: int, start_time,
                                 end_time):
        tf_map = {
            1: "1 min",
            5: "5 mins",
            15: "15 mins",
            30: "30 mins",
            60: "1 hour",
            240: "4 hours",
            1440: "1 day"
        }
        parsed_start, parsed_end = dateparser.parse(
            start_time), dateparser.parse(end_time)
        duration = (parsed_end - parsed_start).days + 1

        bars = self.ib.reqHistoricalData(Stock(str(symbol), 'SMART', 'USD'),
                                         endDateTime=parsed_end,
                                         durationStr=f'{duration} D',
                                         barSizeSetting=tf_map[tf],
                                         whatToShow='TRADES',
                                         useRTH=False,
                                         formatDate=1)
        return Helper.into_dataframe(bars, symbol=symbol, tf=tf)

    def _get_range(self,
                   dataframe: pd.DataFrame,
                   start_date: str = None,
                   end_date: str = None) -> pd.DataFrame:
        """Returns the range of 1-min data within specified start & end date from the entire dataset

            Parameters
            ----------
            dataframe: pd.DataFrame object with a Timestamp as its index
            start_date: date in the format of YYYY-MM-DD format
            end_date: date in the format of YYYY-MM-DD format

            :return dataframe
        """
        if start_date == None or end_date == None:
            raise Exception("No Start date given")

        start_date = Helper.string_to_timestamp(start_date)
        end_date = Helper.string_to_timestamp(end_date)

        # Converting from timestamp index to numbered index, then adding numbered index as column
        dataframe_temp = dataframe.reset_index().reset_index().set_index(
            'timestamp')
        start_index = dataframe_temp.loc[start_date, 'index']
        try:
            end_index = dataframe_temp.loc[end_date, 'index']
        except KeyError:
            end_index = dataframe_temp['index'].iloc[-1]

        return dataframe[start_index:end_index + 1]

    def _timeframe_setter(self,
                          dataframe: pd.DataFrame,
                          skip: int,
                          shift: int = 0,
                          keep_last_row=False) -> pd.DataFrame:
        """ Vertical way of abstracting data
        Converts minute candlestick data into the timeframe(tf) of choice.
        Parameters
        -----------
        dataframe: the dataframe that is being passed as an argument

        tf: The combination of 1-min candles into one value. Number of 1-min candles combined
                is the timeframe value itself.
                The raw data is in a 1-min timeframe. Dataframe contains the following
                columns: ['open', 'high', 'Low, 'close']. Converting to a X minute timeframe is
                handled differently for every column of the candlestick:

            Close - Since all that matters is the close value every 'tf' minutes, you can skip
                every 'tf' minutes.
                Ex.
                    df['close'] = pd.Series([4.50, 4.60, 4.65, 4.44, 4.21, 4.54, 4.10])
                    _timeframe_setter(df['close'], 2) -> [4.50, 4.65, 4.21, 4.10]
                    _timeframe_setter(df['close'], 3) -> [[4.50, 4.44, 4.10]

            Open - Same rules as Close

            High - Get the maximum 1-min high value given the range of the timeframe
                 Ex.
                     df['close'] = pd.Series([4.50, 4.60, 4.65, 4.44, 4.21, 4.54, 4.10])
                    _timeframe_setter(df['high'], 2) ->  [4.60, 4.65, 4.44, 4.54]
                    _timeframe_setter(df['high'], 3) ->  [4.65, 4.54]

            Low - Same rules as 'high', but instead the minimum of that range

            Volume - Same rules as "High", but instead the sum of that range

        If the range of tf is not even (such as having a tf=2 but only 5 elements), then the
        last value will be dropped

        :return dataframe
        """

        if skip == 1:
            return dataframe
        base_tf = int(dataframe['tf'].iloc[0])

        if shift == None:
            # This is making sure that there it shifts so that the last tf candle includes the last 1-minute candle
            shift = skip - len(dataframe) % skip - 1

        dataframe[["open", "high", "low", "close", "volume"
                   ]] = dataframe[["open", "high", "low", "close",
                                   "volume"]].astype(float)

        # Creating a new dataframe so that the size of the rows of the new dataframe will be the same as the new columns
        df = dataframe.iloc[shift::skip].copy()

        rolled_df = dataframe.rolling(skip)

        high = rolled_df['high'].max()
        low = rolled_df['low'].min()
        volume = rolled_df['volume'].sum()
        close = dataframe.copy()['close']

        # Abstracting based on the highest, lowest and sum respectively.
        df['high'] = np.append(high.iloc[shift + skip::skip].values,
                               high.iloc[-1])
        df['low'] = np.append(low.iloc[shift + skip::skip].values,
                              low.iloc[-1])
        df['volume'] = np.append(volume.iloc[shift + skip::skip].values,
                                 volume.iloc[-1])
        # Selecting every nth value in the list, where n is the timeframe
        try:
            df['close'] = close.iloc[shift + skip - 1::skip].values
        except ValueError as e:
            df['close'] = np.append(close.iloc[shift + skip - 1::skip].values,
                                    close.iloc[-1])

        tf = base_tf * skip
        df['tf'] = [tf] * len(df['volume'])

        # Dropping the last value, this gets rid of the candle that isn't complete until the end of the tf
        if not keep_last_row:
            df.drop(df.tail(1).index, inplace=True)

        return df.reset_index().set_index(['symbol', 'tf', 'timestamp'])

    def _get_fast_questrade_data(self, symbol, start_datetime, end_datetime,
                                 tf_str, tf):
        data = self.qtrade.get_historical_data(symbol, start_datetime,
                                               end_datetime, tf_str)
        return Helper.into_dataframe(data, symbol=symbol, tf=tf, qtrade=True)

    def _get_fast_ibkr_data(self, symbol, duration, end_datetime, tf_str, tf):
        data = self.ib.reqHistoricalData(Stock(str(symbol), 'SMART', 'USD'),
                                         endDateTime=end_datetime,
                                         durationStr=f'{duration} D',
                                         barSizeSetting=tf_str,
                                         whatToShow='TRADES',
                                         useRTH=False,
                                         formatDate=1)
        return Helper.into_dataframe(data, symbol=symbol, tf=tf)

#################################################   ASYNC FUNCTIONS   ############################################################

    async def _async_get_fast_questrade_data(self, symbol, start_datetime,
                                             end_datetime, tf_str, tf):
        data = self.qtrade.get_historical_data(symbol, start_datetime,
                                               end_datetime, tf_str)
        return Helper.into_dataframe(data, symbol=symbol, tf=tf, qtrade=True)

    async def _async_get_fast_ibkr_data(self, symbol, duration, end_datetime,
                                        tf_str, tf):

        data = await self.ib.reqHistoricalDataAsync(
            Stock(str(symbol), 'SMART', 'USD'),
            endDateTime=end_datetime,
            durationStr=f'{duration} D',
            barSizeSetting=tf_str,
            whatToShow='TRADES',
            useRTH=False,
            formatDate=1)
        print(symbol, tf)
        # return data
        return Helper.into_dataframe(data, symbol=symbol, tf=tf)

##################################################################################################################################

    def get_ibkr_stock_candles(self, symbol, tf, start_time, end_time):
        tf_map = {
            1: "1 min",
            5: "5 mins",
            15: "15 mins",
            30: "30 mins",
            60: "1 hour",
            240: "4 hours",
            1440: "1 day"
        }

        start_datetime, end_datetime = dateparser.parse(
            start_time), dateparser.parse(end_time)
        duration = (end_datetime - start_datetime).days + 1

        data = self.ib.reqHistoricalData(Stock(str(symbol), 'SMART', 'USD'),
                                         endDateTime=end_datetime,
                                         durationStr=f'{duration} D',
                                         barSizeSetting=tf_map[tf],
                                         whatToShow='TRADES',
                                         useRTH=False,
                                         formatDate=1)
        return util.df(data)

    def get_questrade_stock_candles(self, symbol: str, tf: int, start_time,
                                    end_time):
        tf_map = {
            1: "OneMinute",
            5: "FiveMinutes",
            15: "FifteenMinutes",
            30: "HalfHour",
            60: "OneHour",
            240: "FourHours",
            1440: "OneDay"
        }
        parsed_start, parsed_end = dateparser.parse(
            start_time), dateparser.parse(end_time)
        parsed_start, parsed_end = parsed_start.strftime(
            '%Y-%m-%d %H:%M:%S.%f'), parsed_end.strftime(
                '%Y-%m-%d %H:%M:%S.%f')
        print('finished converting the times', parsed_start, parsed_end)
        data = self.qtrade.get_historical_data(symbol, parsed_start,
                                               parsed_end, tf_map[tf])
        print('got data', len(data))
        return Helper.into_dataframe(data, symbol=symbol, tf=tf, qtrade=True)

    def get_binance_candles(self, symbol, tf, start_date, end_date=None):
        map_tf = {
            1: "1m",
            3: "3m",
            5: "5m",
            15: "15m",
            30: "30m",
            60: "1h",
            120: "2h",
            240: "4h",
            360: "6h",
            480: "8h"
        }
        lst = self.binance.get_historical_klines(symbol=symbol,
                                                 interval=map_tf[tf],
                                                 start_str=start_date)
        return Helper.into_dataframe(lst, symbol=symbol, tf=tf, index=False)

    def get_all_binance_data(self, symbol, tf, start_date, end_date=None):
        map_tf = {
            1: "1m",
            3: "3m",
            5: "5m",
            15: "15m",
            30: "30m",
            60: "1h",
            120: "2h",
            240: "4h",
            360: "6h",
            480: "8h"
        }
        list_symbol = self.binance.get_historical_klines(symbol=symbol,
                                                         interval=map_tf[tf],
                                                         start_str=start_date)
        df_symbol = pd.DataFrame(list_symbol)
        df_symbol.columns = [
            "timestamp", "open", "high", "low", "close", "volume",
            "timestamp_end", "", "", "", "", ""
        ]

        ##Fixing Columns
        df_symbol['timestamp'] = [
            int(timestamp / 1000) for timestamp in df_symbol['timestamp']
        ]
        df_symbol['date'] = [
            datetime.fromtimestamp(timestamp)
            for timestamp in df_symbol['timestamp'].values
        ]
        df_symbol['tf'] = [tf[:-1]] * len(df_symbol)
        df_symbol['symbol'] = [symbol] * len(df_symbol)

        df_symbol[["open", "high", "low", "close", "volume"
                   ]] = df_symbol[["open", "high", "low", "close",
                                   "volume"]].astype(float)
        df_symbol = df_symbol[[
            'symbol', 'tf', 'timestamp', 'date', 'open', 'high', 'low',
            'close', 'volume'
        ]]
        df_symbol = df_symbol.set_index(["symbol", "tf", "timestamp"])

        start_date = str(df_symbol.iloc[0, 0])[:10]

        string = f"Binance {symbol} {tf}m data from {start_date} to {str(datetime.now())[:10]}.csv"
        print(string)
        # df_symbol.to_csv(string)

        return df_symbol