Ejemplo n.º 1
0
 def apply(item, bins):
     """
     Adds the item to the next available bin after the last insertion.
     :param item: The item to add.
     :param bins: The bins to choose from.
     :return: The list of bins after insertion.
     """
     b = bins[-1]
     if not b.add_item(item):
         b = Bin(bins[0].capacity)
         bins.append(b)
         b.add_item(item)
     return bins
Ejemplo n.º 2
0
 def apply(item, bins):
     """
     Adds the item to the very first bin that it can fit it.
     :param item: The item to add.
     :param bins: The bins to choose from.
     :return: The list of bins after the insertion.
     """
     b = next((b for b in bins if b.can_add_item(item)), None)
     if not b:
         b = Bin(bins[0].capacity)
         bins.append(b)
     b.add_item(item)
     return bins
Ejemplo n.º 3
0
 def apply(item, bins):
     """
     Adds the item to the bin for which the most amount of open space would be available after insertion.
     :param item: The item to add.
     :param bins: The bins to choose from.
     :return: The list of bins after insertion.
     """
     valid_bins = (b for b in bins if b.can_add_item(item))
     sorted_bins = sorted(valid_bins, key=lambda x: x.filled_space())
     if sorted_bins:
         b = sorted_bins[0]
     else:
         b = Bin(bins[0].capacity)
         bins.append(b)
     b.add_item(item)
     return bins
Ejemplo n.º 4
0
    def execDir(self):
        global pathh
        pat = pathh
        files = listdir(pathh)
        open("result_ff.csv", "w").close()
        print(1)
        print(pat)
        for f in files:
            l = pat + "/" + f
            print(f)
            j = self.InstanceReader2(f)
            print("hada", j)
            instance, n, C, w = self.InstanceReader(l)
            print("hadddd")
            items = [Item(size=int(i)) for i in w]
            shuffle(items)
            start = timeit.default_timer()
            bins = [Bin(capacity=C)]
            for item in items:

                bins = FirstFit.apply(item, bins)
            stop = timeit.default_timer()
            time = stop - start
            c = len(bins)
            resultatt = open("result_ff.csv", mode="a+")

            resultatt.write(f'{instance},{n},{C},{c},{j},{time * 1000}\n')  # Ecrire les resultats dans un fichier csv
            resultatt.close()
        print(pathh)
        self.loadData_mod_csv('./result_ff.csv')
Ejemplo n.º 5
0
 def apply(item, bins):
     """
     Adds the item to the bin for which the least amount of open space would be available after insertion.
     :param item: The item to add.
     :param bins: The bins to choose from.
     :return: The list of bins after the insertion.
     """
     valid_bins = (b for b in bins if b.can_add_item(item))
     # Note that this method is exactly the same as for the BestFit heuristic except for the following line.
     sorted_bins = sorted(valid_bins, key=lambda x: x.filled_space(), reverse=True)
     if sorted_bins:
         b = sorted_bins[0]
     else:
         b = Bin(bins[0].capacity)
         bins.append(b)
     b.add_item(item)
     return bins
 def generate_solution(self, items):
     """
     Generates a candidate solution based on the pattern given.
     :param items: The items that need to be used when generating a solution.
     :return: A list of bins to serve as a solution.
     """
     solution = [Bin(self.bin_capacity)]
     pattern_length = len(self.pattern)
     for idx, item in enumerate(items):
         h = self.pattern[idx % pattern_length]
         solution = self.heuristic_map[h].apply(item, solution)
     return solution
Ejemplo n.º 7
0
    def exeFile(self):
        global pathh
        a_file = open(pathh, "r")
        print(pathh, 111)
        list_of_lists = []
        for line in a_file:
            stripped_line = line.strip()
            # line_list = stripped_line.split()
            n_liste = int(stripped_line)
            list_of_lists.append(n_liste)

        a_file.close()
        weight = list_of_lists[2:]
        # print(weight)
        C = list_of_lists[1]
        print(C)
        items = [Item(size=int(i)) for i in weight]
        shuffle(items)
        start = timeit.default_timer()
        bins = [Bin(capacity=C)]
        print(1)
        for item in items:
            print(item)
            bins = BestFit.apply(item, bins)
            print(2)
        stop = timeit.default_timer()
        time = stop - start
        c = len(bins)
        #c, conf, time = self.next_fit(weight, C)
        print(c)
        print(time)
        c1 = str(c)
        self.nbr_bin.setText(c1)
        tex = time * 1000
        tex1 = str(tex)
        self.t_exe.setText(tex1)
        print("nooo")
        l = list_of_lists[0]
        print(l)
        g = str(l)
        print("hi", g)
        self.items_nb.setText(g)
        r = str(C)
        print("hi", g, r)
        self.bin_cap.setText(r)