def main():
    path = os.path.join(
        ROOT_DIR, 'spikes', 'mnist', 'crop_locally_connected',
        'train_2_12_4_100_4_0.01_0.99_60000_250.0_250_1.0_0.05_1e-07_0.5_0.2_10_250'
    )

    ngram_scores = {}
    for i in tqdm(range(200, 240)):
        f = os.path.join(path, f'{i}.pt')
        spikes, labels = torch.load(f, map_location=location)
        ngram_scores = update_ngram_scores(spikes=spikes,
                                           labels=labels,
                                           n_labels=10,
                                           n=1,
                                           ngram_scores=ngram_scores)

    all_labels = torch.LongTensor()
    all_predictions = torch.LongTensor()
    for i in tqdm(range(200, 240)):
        f = os.path.join(path, f'{i}.pt')
        spikes, labels = torch.load(f, map_location=location)
        predictions = ngram(spikes=spikes,
                            ngram_scores=ngram_scores,
                            n_labels=10,
                            n=1)
        all_labels = torch.cat([all_labels, labels.long()])
        all_predictions = torch.cat([all_predictions, predictions.long()])

    accuracy = (all_labels == all_predictions).float().mean() * 100
    print(f'Training accuracy: {accuracy:.2f}')

    path = os.path.join(
        ROOT_DIR, 'spikes', 'mnist', 'crop_locally_connected',
        'test_2_12_4_100_4_0.01_0.99_60000_10000_250.0_250_1.0_0.05_1e-07_0.5_0.2_10_250'
    )

    all_labels = torch.LongTensor()
    all_predictions = torch.LongTensor()
    for i in tqdm(range(1, 40)):
        f = os.path.join(path, f'{i}.pt')
        spikes, labels = torch.load(f, map_location=location)
        predictions = ngram(spikes=spikes,
                            ngram_scores=ngram_scores,
                            n_labels=10,
                            n=1)
        all_labels = torch.cat([all_labels, labels.long()])
        all_predictions = torch.cat([all_predictions, predictions.long()])

    accuracy = (all_labels == all_predictions).float().mean() * 100
    print(f'Test accuracy: {accuracy:.2f}')
def main(seed=0,
         n_train=60000,
         n_test=10000,
         inhib=250,
         kernel_size=(16, ),
         stride=(2, ),
         time=50,
         n_filters=25,
         crop=0,
         lr=1e-2,
         lr_decay=0.99,
         dt=1,
         theta_plus=0.05,
         theta_decay=1e-7,
         norm=0.2,
         progress_interval=10,
         update_interval=250,
         train=True,
         relabel=False,
         plot=False,
         gpu=False):

    assert n_train % update_interval == 0 and n_test % update_interval == 0 or relabel, \
        'No. examples must be divisible by update_interval'

    params = [
        seed, kernel_size, stride, n_filters, crop, lr, lr_decay, n_train,
        inhib, time, dt, theta_plus, theta_decay, norm, progress_interval,
        update_interval
    ]

    model_name = '_'.join([str(x) for x in params])

    if not train:
        test_params = [
            seed, kernel_size, stride, n_filters, crop, lr, lr_decay, n_train,
            n_test, inhib, time, dt, theta_plus, theta_decay, norm,
            progress_interval, update_interval
        ]

    np.random.seed(seed)

    if gpu:
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.manual_seed_all(seed)
    else:
        torch.manual_seed(seed)

    side_length = 28 - crop * 2
    n_inpt = side_length**2
    n_examples = n_train if train else n_test
    n_classes = 10

    # Build network.
    if train:
        network = LocallyConnectedNetwork(
            n_inpt=n_inpt,
            input_shape=[side_length, side_length],
            kernel_size=kernel_size,
            stride=stride,
            n_filters=n_filters,
            inh=inhib,
            dt=dt,
            nu=[.1 * lr, lr],
            theta_plus=theta_plus,
            theta_decay=theta_decay,
            wmin=0,
            wmax=1.0,
            norm=norm)
        network.layers['Y'].thresh = 1
        network.layers['Y'].reset = 0
        network.layers['Y'].rest = 0

    else:
        network = load_network(os.path.join(params_path, model_name + '.pt'))
        network.connections['X', 'Y'].update_rule = NoOp(
            connection=network.connections['X', 'Y'],
            nu=network.connections['X', 'Y'].nu)
        network.layers['Y'].theta_decay = 0
        network.layers['Y'].theta_plus = 0

    conv_size = network.connections['X', 'Y'].conv_size
    locations = network.connections['X', 'Y'].locations
    conv_prod = int(np.prod(conv_size))
    n_neurons = n_filters * conv_prod

    # Voltage recording for excitatory and inhibitory layers.
    voltage_monitor = Monitor(network.layers['Y'], ['v'], time=time)
    network.add_monitor(voltage_monitor, name='output_voltage')

    # Load Fashion-MNIST data.
    dataset = FashionMNIST(path=data_path, download=True)

    if train:
        images, labels = dataset.get_train()
    else:
        images, labels = dataset.get_test()

    if crop != 0:
        images = images[:, crop:-crop, crop:-crop]

    # Record spikes during the simulation.
    if not train:
        update_interval = n_examples

    spike_record = torch.zeros(update_interval, time, n_neurons)

    # Neuron assignments and spike proportions.
    if train:
        assignments = -torch.ones_like(torch.Tensor(n_neurons))
        proportions = torch.zeros_like(torch.Tensor(n_neurons, 10))
        rates = torch.zeros_like(torch.Tensor(n_neurons, 10))
        ngram_scores = {}
    else:
        path = os.path.join(params_path,
                            '_'.join(['auxiliary', model_name]) + '.pt')
        assignments, proportions, rates, ngram_scores = torch.load(
            open(path, 'rb'))

    if train:
        best_accuracy = 0

    # Sequence of accuracy estimates.
    curves = {'all': [], 'proportion': [], 'ngram': []}
    predictions = {scheme: torch.Tensor().long() for scheme in curves.keys()}

    spikes = {}
    for layer in set(network.layers):
        spikes[layer] = Monitor(network.layers[layer],
                                state_vars=['s'],
                                time=time)
        network.add_monitor(spikes[layer], name=f'{layer}_spikes')

    # Train the network.
    if train:
        print('\nBegin training.\n')
    else:
        print('\nBegin test.\n')

    spike_ims = None
    spike_axes = None
    weights_im = None

    start = t()
    for i in range(n_examples):
        if i % progress_interval == 0 and train:
            network.connections['X', 'Y'].update_rule.nu[1] *= lr_decay

        if i % progress_interval == 0:
            print(f'Progress: {i} / {n_examples} ({t() - start:.4f} seconds)')
            start = t()

        if i % update_interval == 0 and i > 0:
            if i % len(labels) == 0:
                current_labels = labels[-update_interval:]
            else:
                current_labels = labels[i % len(images) - update_interval:i %
                                        len(images)]

            # Update and print accuracy evaluations.
            curves, preds = update_curves(curves,
                                          current_labels,
                                          n_classes,
                                          spike_record=spike_record,
                                          assignments=assignments,
                                          proportions=proportions,
                                          ngram_scores=ngram_scores,
                                          n=2)
            print_results(curves)

            for scheme in preds:
                predictions[scheme] = torch.cat(
                    [predictions[scheme], preds[scheme]], -1)

            # Save accuracy curves to disk.
            to_write = ['train'] + params if train else ['test'] + params
            f = '_'.join([str(x) for x in to_write]) + '.pt'
            torch.save((curves, update_interval, n_examples),
                       open(os.path.join(curves_path, f), 'wb'))

            if train:
                if any([x[-1] > best_accuracy for x in curves.values()]):
                    print(
                        'New best accuracy! Saving network parameters to disk.'
                    )

                    # Save network to disk.
                    network.save(os.path.join(params_path, model_name + '.pt'))
                    path = os.path.join(
                        params_path,
                        '_'.join(['auxiliary', model_name]) + '.pt')
                    torch.save((assignments, proportions, rates, ngram_scores),
                               open(path, 'wb'))

                    best_accuracy = max([x[-1] for x in curves.values()])

                # Assign labels to excitatory layer neurons.
                assignments, proportions, rates = assign_labels(
                    spike_record, current_labels, n_classes, rates)

                # Compute ngram scores.
                ngram_scores = update_ngram_scores(spike_record,
                                                   current_labels, n_classes,
                                                   2, ngram_scores)

            print()

        # Get next input sample.
        image = images[i % len(images)].contiguous().view(-1)
        sample = poisson(datum=image, time=time, dt=dt)
        inpts = {'X': sample}

        # Run the network on the input.
        network.run(inpts=inpts, time=time)

        retries = 0
        while spikes['Y'].get('s').sum() < 5 and retries < 3:
            retries += 1
            image *= 2
            sample = poisson(datum=image, time=time, dt=dt)
            inpts = {'X': sample}
            network.run(inpts=inpts, time=time)

        # Add to spikes recording.
        spike_record[i % update_interval] = spikes['Y'].get('s').t()

        # Optionally plot various simulation information.
        if plot:
            _spikes = {
                'X': spikes['X'].get('s').view(side_length**2, time),
                'Y': spikes['Y'].get('s').view(n_filters * conv_prod, time)
            }

            spike_ims, spike_axes = plot_spikes(spikes=_spikes,
                                                ims=spike_ims,
                                                axes=spike_axes)
            weights_im = plot_locally_connected_weights(
                network.connections['X', 'Y'].w,
                n_filters,
                kernel_size,
                conv_size,
                locations,
                side_length,
                im=weights_im,
                wmin=0,
                wmax=1)

            plt.pause(1e-8)

        network.reset_()  # Reset state variables.

    print(f'Progress: {n_examples} / {n_examples} ({t() - start:.4f} seconds)')

    i += 1

    if i % len(labels) == 0:
        current_labels = labels[-update_interval:]
    else:
        current_labels = labels[i % len(images) - update_interval:i %
                                len(images)]

    if not train and relabel:
        # Assign labels to excitatory layer neurons.
        assignments, proportions, rates = assign_labels(
            spike_record, current_labels, n_classes, rates)

        # Compute ngram scores.
        ngram_scores = update_ngram_scores(spike_record, current_labels,
                                           n_classes, 2, ngram_scores)

    # Update and print accuracy evaluations.
    curves, preds = update_curves(curves,
                                  current_labels,
                                  n_classes,
                                  spike_record=spike_record,
                                  assignments=assignments,
                                  proportions=proportions,
                                  ngram_scores=ngram_scores,
                                  n=2)
    print_results(curves)

    for scheme in preds:
        predictions[scheme] = torch.cat([predictions[scheme], preds[scheme]],
                                        -1)

    if train:
        if any([x[-1] > best_accuracy for x in curves.values()]):
            print('New best accuracy! Saving network parameters to disk.')

            # Save network to disk.
            network.save(os.path.join(params_path, model_name + '.pt'))
            path = os.path.join(params_path,
                                '_'.join(['auxiliary', model_name]) + '.pt')
            torch.save((assignments, proportions, rates, ngram_scores),
                       open(path, 'wb'))

    if train:
        print('\nTraining complete.\n')
    else:
        print('\nTest complete.\n')

    print('Average accuracies:\n')
    for scheme in curves.keys():
        print('\t%s: %.2f' % (scheme, float(np.mean(curves[scheme]))))

    # Save accuracy curves to disk.
    to_write = ['train'] + params if train else ['test'] + params
    f = '_'.join([str(x) for x in to_write]) + '.pt'
    torch.save((curves, update_interval, n_examples),
               open(os.path.join(curves_path, f), 'wb'))

    # Save results to disk.
    path = os.path.join('..', '..', 'results', data, model)
    if not os.path.isdir(path):
        os.makedirs(path)

    results = [
        np.mean(curves['all']),
        np.mean(curves['proportion']),
        np.mean(curves['ngram']),
        np.max(curves['all']),
        np.max(curves['proportion']),
        np.max(curves['ngram'])
    ]

    to_write = params + results if train else test_params + results
    to_write = [str(x) for x in to_write]
    name = 'train.csv' if train else 'test.csv'

    if not os.path.isfile(os.path.join(results_path, name)):
        with open(os.path.join(path, name), 'w') as f:
            if train:
                f.write(
                    'random_seed,kernel_size,stride,n_filters,crop,n_train,inhib,time,lr,lr_decay,timestep,theta_plus,'
                    'theta_decay,norm,progress_interval,update_interval,mean_all_activity,mean_proportion_weighting,'
                    'mean_ngram,max_all_activity,max_proportion_weighting,max_ngram\n'
                )
            else:
                f.write(
                    'random_seed,kernel_size,stride,n_filters,crop,n_train,n_test,inhib,time,lr,lr_decay,timestep,'
                    'theta_plus,theta_decay,norm,progress_interval,update_interval,mean_all_activity,'
                    'mean_proportion_weighting,mean_ngram,max_all_activity,max_proportion_weighting,max_ngram\n'
                )

    with open(os.path.join(results_path, name), 'a') as f:
        f.write(','.join(to_write) + '\n')

    if labels.numel() > n_examples:
        labels = labels[:n_examples]
    else:
        while labels.numel() < n_examples:
            if 2 * labels.numel() > n_examples:
                labels = torch.cat(
                    [labels, labels[:n_examples - labels.numel()]])
            else:
                labels = torch.cat([labels, labels])

    # Compute confusion matrices and save them to disk.
    confusions = {}
    for scheme in predictions:
        confusions[scheme] = confusion_matrix(labels, predictions[scheme])

    to_write = ['train'] + params if train else ['test'] + test_params
    f = '_'.join([str(x) for x in to_write]) + '.pt'
    torch.save(confusions, os.path.join(confusion_path, f))
def main(seed=0,
         n_neurons=100,
         n_train=60000,
         n_test=10000,
         inhib=100,
         lr=1e-2,
         lr_decay=1,
         time=350,
         dt=1,
         theta_plus=0.05,
         theta_decay=1e7,
         intensity=1,
         progress_interval=10,
         update_interval=250,
         plot=False,
         train=True,
         gpu=False):

    assert n_train % update_interval == 0 and n_test % update_interval == 0, \
                            'No. examples must be divisible by update_interval'

    params = [
        seed, n_neurons, n_train, inhib, lr, lr_decay, time, dt, theta_plus,
        theta_decay, intensity, progress_interval, update_interval
    ]

    test_params = [
        seed, n_neurons, n_train, n_test, inhib, lr, lr_decay, time, dt,
        theta_plus, theta_decay, intensity, progress_interval, update_interval
    ]

    model_name = '_'.join([str(x) for x in params])

    np.random.seed(seed)

    if gpu:
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.manual_seed_all(seed)
    else:
        torch.manual_seed(seed)

    n_examples = n_train if train else n_test
    n_sqrt = int(np.ceil(np.sqrt(n_neurons)))
    n_classes = 10

    # Build network.
    if train:
        network = DiehlAndCook2015v2(n_inpt=784,
                                     n_neurons=n_neurons,
                                     inh=inhib,
                                     dt=dt,
                                     norm=78.4,
                                     theta_plus=theta_plus,
                                     theta_decay=theta_decay,
                                     nu=[0, lr])

    else:
        network = load(os.path.join(params_path, model_name + '.pt'))
        network.connections['X', 'Y'].update_rule = NoOp(
            connection=network.connections['X', 'Y'],
            nu=network.connections['X', 'Y'].nu)
        network.layers['Y'].theta_decay = 0
        network.layers['Y'].theta_plus = 0

    # Load MNIST data.
    dataset = MNIST(path=data_path, download=True)

    if train:
        images, labels = dataset.get_train()
    else:
        images, labels = dataset.get_test()

    images = images.view(-1, 784)
    images *= intensity

    # Record spikes during the simulation.
    spike_record = torch.zeros(update_interval, time, n_neurons)
    full_spike_record = torch.zeros(n_examples, n_neurons).long()

    # Neuron assignments and spike proportions.
    if train:
        assignments = -torch.ones_like(torch.Tensor(n_neurons))
        proportions = torch.zeros_like(torch.Tensor(n_neurons, n_classes))
        rates = torch.zeros_like(torch.Tensor(n_neurons, n_classes))
        ngram_scores = {}
    else:
        path = os.path.join(params_path,
                            '_'.join(['auxiliary', model_name]) + '.pt')
        assignments, proportions, rates, ngram_scores = torch.load(
            open(path, 'rb'))

    # Sequence of accuracy estimates.
    curves = {'all': [], 'proportion': [], 'ngram': []}
    predictions = {scheme: torch.Tensor().long() for scheme in curves.keys()}

    if train:
        best_accuracy = 0

    spikes = {}
    for layer in set(network.layers):
        spikes[layer] = Monitor(network.layers[layer],
                                state_vars=['s'],
                                time=time)
        network.add_monitor(spikes[layer], name='%s_spikes' % layer)

    # Train the network.
    if train:
        print('\nBegin training.\n')
    else:
        print('\nBegin test.\n')

    inpt_axes = None
    inpt_ims = None
    spike_ims = None
    spike_axes = None
    weights_im = None
    assigns_im = None
    perf_ax = None

    start = t()
    for i in range(n_examples):
        if i % progress_interval == 0:
            print(f'Progress: {i} / {n_examples} ({t() - start:.4f} seconds)')
            start = t()

        if i % update_interval == 0 and i > 0:
            if train:
                network.connections['X', 'Y'].update_rule.nu[1] *= lr_decay

            if i % len(labels) == 0:
                current_labels = labels[-update_interval:]
            else:
                current_labels = labels[i % len(images) - update_interval:i %
                                        len(images)]

            # Update and print accuracy evaluations.
            curves, preds = update_curves(curves,
                                          current_labels,
                                          n_classes,
                                          spike_record=spike_record,
                                          assignments=assignments,
                                          proportions=proportions,
                                          ngram_scores=ngram_scores,
                                          n=2)
            print_results(curves)

            for scheme in preds:
                predictions[scheme] = torch.cat(
                    [predictions[scheme], preds[scheme]], -1)

            # Save accuracy curves to disk.
            to_write = ['train'] + params if train else ['test'] + params
            f = '_'.join([str(x) for x in to_write]) + '.pt'
            torch.save((curves, update_interval, n_examples),
                       open(os.path.join(curves_path, f), 'wb'))

            if train:
                if any([x[-1] > best_accuracy for x in curves.values()]):
                    print(
                        'New best accuracy! Saving network parameters to disk.'
                    )

                    # Save network to disk.
                    network.save(os.path.join(params_path, model_name + '.pt'))
                    path = os.path.join(
                        params_path,
                        '_'.join(['auxiliary', model_name]) + '.pt')
                    torch.save((assignments, proportions, rates, ngram_scores),
                               open(path, 'wb'))
                    best_accuracy = max([x[-1] for x in curves.values()])

                # Assign labels to excitatory layer neurons.
                assignments, proportions, rates = assign_labels(
                    spike_record, current_labels, n_classes, rates)

                # Compute ngram scores.
                ngram_scores = update_ngram_scores(spike_record,
                                                   current_labels, n_classes,
                                                   2, ngram_scores)

            print()

        # Get next input sample.
        image = images[i % len(images)]
        sample = poisson(datum=image, time=time, dt=dt)
        inpts = {'X': sample}

        # Run the network on the input.
        network.run(inpts=inpts, time=time)

        retries = 0
        while spikes['Y'].get('s').sum() < 1 and retries < 3:
            retries += 1
            image *= 2
            sample = poisson(datum=image, time=time, dt=dt)
            inpts = {'X': sample}
            network.run(inpts=inpts, time=time)

        # Add to spikes recording.
        spike_record[i % update_interval] = spikes['Y'].get('s').t()
        full_spike_record[i] = spikes['Y'].get('s').t().sum(0).long()

        # Optionally plot various simulation information.
        if plot:
            # _input = image.view(28, 28)
            # reconstruction = inpts['X'].view(time, 784).sum(0).view(28, 28)
            _spikes = {layer: spikes[layer].get('s') for layer in spikes}
            input_exc_weights = network.connections[('X', 'Y')].w
            square_weights = get_square_weights(
                input_exc_weights.view(784, n_neurons), n_sqrt, 28)
            # square_assignments = get_square_assignments(assignments, n_sqrt)

            # inpt_axes, inpt_ims = plot_input(_input, reconstruction, label=labels[i], axes=inpt_axes, ims=inpt_ims)
            spike_ims, spike_axes = plot_spikes(_spikes,
                                                ims=spike_ims,
                                                axes=spike_axes)
            weights_im = plot_weights(square_weights, im=weights_im)
            # assigns_im = plot_assignments(square_assignments, im=assigns_im)
            # perf_ax = plot_performance(curves, ax=perf_ax)

            plt.pause(1e-8)

        network.reset_()  # Reset state variables.

    print(f'Progress: {n_examples} / {n_examples} ({t() - start:.4f} seconds)')

    i += 1

    if i % len(labels) == 0:
        current_labels = labels[-update_interval:]
    else:
        current_labels = labels[i % len(images) - update_interval:i %
                                len(images)]

    # Update and print accuracy evaluations.
    curves, preds = update_curves(curves,
                                  current_labels,
                                  n_classes,
                                  spike_record=spike_record,
                                  assignments=assignments,
                                  proportions=proportions,
                                  ngram_scores=ngram_scores,
                                  n=2)
    print_results(curves)

    for scheme in preds:
        predictions[scheme] = torch.cat([predictions[scheme], preds[scheme]],
                                        -1)

    if train:
        if any([x[-1] > best_accuracy for x in curves.values()]):
            print('New best accuracy! Saving network parameters to disk.')

            # Save network to disk.
            if train:
                network.save(os.path.join(params_path, model_name + '.pt'))
                path = os.path.join(
                    params_path, '_'.join(['auxiliary', model_name]) + '.pt')
                torch.save((assignments, proportions, rates, ngram_scores),
                           open(path, 'wb'))

    if train:
        print('\nTraining complete.\n')
    else:
        print('\nTest complete.\n')

    print('Average accuracies:\n')
    for scheme in curves.keys():
        print('\t%s: %.2f' % (scheme, float(np.mean(curves[scheme]))))

    # Save accuracy curves to disk.
    to_write = ['train'] + params if train else ['test'] + params
    f = '_'.join([str(x) for x in to_write]) + '.pt'
    torch.save((curves, update_interval, n_examples),
               open(os.path.join(curves_path, f), 'wb'))

    # Save results to disk.
    results = [
        np.mean(curves['all']),
        np.mean(curves['proportion']),
        np.mean(curves['ngram']),
        np.max(curves['all']),
        np.max(curves['proportion']),
        np.max(curves['ngram'])
    ]

    to_write = params + results if train else test_params + results
    to_write = [str(x) for x in to_write]
    name = 'train.csv' if train else 'test.csv'

    if not os.path.isfile(os.path.join(results_path, name)):
        with open(os.path.join(results_path, name), 'w') as f:
            if train:
                f.write(
                    'random_seed,n_neurons,n_train,inhib,lr,lr_decay,time,timestep,theta_plus,theta_decay,intensity,'
                    'progress_interval,update_interval,mean_all_activity,mean_proportion_weighting,'
                    'mean_ngram,max_all_activity,max_proportion_weighting,max_ngram\n'
                )
            else:
                f.write(
                    'random_seed,n_neurons,n_train,n_test,inhib,lr,lr_decay,time,timestep,theta_plus,theta_decay,'
                    'intensity,progress_interval,update_interval,mean_all_activity,mean_proportion_weighting,'
                    'mean_ngram,max_all_activity,max_proportion_weighting,max_ngram\n'
                )

    with open(os.path.join(results_path, name), 'a') as f:
        f.write(','.join(to_write) + '\n')

    if labels.numel() > n_examples:
        labels = labels[:n_examples]
    else:
        while labels.numel() < n_examples:
            if 2 * labels.numel() > n_examples:
                labels = torch.cat(
                    [labels, labels[:n_examples - labels.numel()]])
            else:
                labels = torch.cat([labels, labels])

    # Compute confusion matrices and save them to disk.
    confusions = {}
    for scheme in predictions:
        confusions[scheme] = confusion_matrix(labels, predictions[scheme])

    to_write = ['train'] + params if train else ['test'] + test_params
    f = '_'.join([str(x) for x in to_write]) + '.pt'
    torch.save(confusions, os.path.join(confusion_path, f))

    # Save full spike record to disk.
    torch.save(full_spike_record, os.path.join(spikes_path, f))
Ejemplo n.º 4
0
                    os.makedirs(path)

                network.save(os.path.join(path, model_name + '.pt'))
                path = os.path.join(
                    path, '_'.join(['auxiliary', model_name]) + '.pt')
                torch.save((assignments, proportions, rates, ngram_scores),
                           open(path, 'wb'))

                best_accuracy = max([x[-1] for x in curves.values()])

            # Assign labels to excitatory layer neurons.
            assignments, proportions, rates = assign_labels(
                spike_record, current_labels, n_classes, rates)

            # Compute ngram scores.
            ngram_scores = update_ngram_scores(spike_record, current_labels,
                                               n_classes, 2, ngram_scores)

        print()

    # Get next input sample.
    image = images[i]
    sample = bernoulli(datum=image, time=time, dt=dt,
                       max_prob=0.5).unsqueeze(1).unsqueeze(1)
    inpts = {'X': sample}

    # Run the network on the input.
    network.run(inpts=inpts, time=time)

    retries = 0
    while spikes['Y_'].get('s').sum() < 5 and retries < 3:
        retries += 1
def main(seed=0,
         n_neurons=100,
         n_train=60000,
         n_test=10000,
         inhib=250,
         time=50,
         lr=1e-2,
         lr_decay=0.99,
         dt=1,
         theta_plus=0.05,
         theta_decay=1e-7,
         progress_interval=10,
         update_interval=250,
         train=True,
         plot=False,
         gpu=False):

    assert n_train % update_interval == 0 and n_test % update_interval == 0, \
                            'No. examples must be divisible by update_interval'

    params = [
        seed, n_neurons, n_train, inhib, time, lr, lr_decay, theta_plus,
        theta_decay, progress_interval, update_interval
    ]

    test_params = [
        seed, n_neurons, n_train, n_test, inhib, time, lr, lr_decay,
        theta_plus, theta_decay, progress_interval, update_interval
    ]

    model_name = '_'.join([str(x) for x in params])

    np.random.seed(seed)

    if gpu:
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.manual_seed_all(seed)
    else:
        torch.manual_seed(seed)

    if train:
        n_examples = n_train
    else:
        n_examples = n_test

    n_sqrt = int(np.ceil(np.sqrt(n_neurons)))
    n_classes = 10

    # Build network.
    if train:
        network = Network(dt=dt)

        input_layer = Input(n=784, traces=True, trace_tc=5e-2)
        network.add_layer(input_layer, name='X')

        output_layer = DiehlAndCookNodes(n=n_neurons,
                                         traces=True,
                                         rest=0,
                                         reset=0,
                                         thresh=1,
                                         refrac=0,
                                         decay=1e-2,
                                         trace_tc=5e-2,
                                         theta_plus=theta_plus,
                                         theta_decay=theta_decay)
        network.add_layer(output_layer, name='Y')

        w = 0.3 * torch.rand(784, n_neurons)
        input_connection = Connection(source=network.layers['X'],
                                      target=network.layers['Y'],
                                      w=w,
                                      update_rule=PostPre,
                                      nu=[0, lr],
                                      wmin=0,
                                      wmax=1,
                                      norm=78.4)
        network.add_connection(input_connection, source='X', target='Y')

        w = -inhib * (torch.ones(n_neurons, n_neurons) -
                      torch.diag(torch.ones(n_neurons)))
        recurrent_connection = Connection(source=network.layers['Y'],
                                          target=network.layers['Y'],
                                          w=w,
                                          wmin=-inhib,
                                          wmax=0)
        network.add_connection(recurrent_connection, source='Y', target='Y')

    else:
        path = os.path.join('..', '..', 'params', data, model)
        network = load_network(os.path.join(path, model_name + '.pt'))
        network.connections['X', 'Y'].update_rule = NoOp(
            connection=network.connections['X', 'Y'],
            nu=network.connections['X', 'Y'].nu)
        network.layers['Y'].theta_decay = 0
        network.layers['Y'].theta_plus = 0

    # Load Fashion-MNIST data.
    dataset = FashionMNIST(path=os.path.join('..', '..', 'data',
                                             'FashionMNIST'),
                           download=True)

    if train:
        images, labels = dataset.get_train()
    else:
        images, labels = dataset.get_test()

    images = images.view(-1, 784)
    images = images / 255

    # if train:
    #     for i in range(n_neurons):
    #         network.connections['X', 'Y'].w[:, i] = images[i] + images[i].mean() * torch.randn(784)

    # Record spikes during the simulation.
    spike_record = torch.zeros(update_interval, time, n_neurons)

    # Neuron assignments and spike proportions.
    if train:
        assignments = -torch.ones_like(torch.Tensor(n_neurons))
        proportions = torch.zeros_like(torch.Tensor(n_neurons, n_classes))
        rates = torch.zeros_like(torch.Tensor(n_neurons, n_classes))
        ngram_scores = {}
    else:
        path = os.path.join('..', '..', 'params', data, model)
        path = os.path.join(path, '_'.join(['auxiliary', model_name]) + '.pt')
        assignments, proportions, rates, ngram_scores = torch.load(
            open(path, 'rb'))

    # Sequence of accuracy estimates.
    curves = {'all': [], 'proportion': [], 'ngram': []}

    if train:
        best_accuracy = 0

    spikes = {}

    for layer in set(network.layers):
        spikes[layer] = Monitor(network.layers[layer],
                                state_vars=['s'],
                                time=time)
        network.add_monitor(spikes[layer], name='%s_spikes' % layer)

    # Train the network.
    if train:
        print('\nBegin training.\n')
    else:
        print('\nBegin test.\n')

    inpt_axes = None
    inpt_ims = None
    spike_ims = None
    spike_axes = None
    weights_im = None
    assigns_im = None
    perf_ax = None

    start = t()
    for i in range(n_examples):
        if i % progress_interval == 0 and train:
            network.connections['X', 'Y'].update_rule.nu[1] *= lr_decay

        if i % progress_interval == 0:
            print(f'Progress: {i} / {n_examples} ({t() - start:.4f} seconds)')
            start = t()

        if i % update_interval == 0 and i > 0:
            if i % len(labels) == 0:
                current_labels = labels[-update_interval:]
            else:
                current_labels = labels[i % len(images) - update_interval:i %
                                        len(images)]

            # Update and print accuracy evaluations.
            curves, predictions = update_curves(curves,
                                                current_labels,
                                                n_classes,
                                                spike_record=spike_record,
                                                assignments=assignments,
                                                proportions=proportions,
                                                ngram_scores=ngram_scores,
                                                n=2)
            print_results(curves)

            if train:
                if any([x[-1] > best_accuracy for x in curves.values()]):
                    print(
                        'New best accuracy! Saving network parameters to disk.'
                    )

                    # Save network to disk.
                    path = os.path.join('..', '..', 'params', data, model)
                    if not os.path.isdir(path):
                        os.makedirs(path)

                    network.save(os.path.join(path, model_name + '.pt'))
                    path = os.path.join(
                        path, '_'.join(['auxiliary', model_name]) + '.pt')
                    torch.save((assignments, proportions, rates, ngram_scores),
                               open(path, 'wb'))

                    best_accuracy = max([x[-1] for x in curves.values()])

                # Assign labels to excitatory layer neurons.
                assignments, proportions, rates = assign_labels(
                    spike_record, current_labels, n_classes, rates)

                # Compute ngram scores.
                ngram_scores = update_ngram_scores(spike_record,
                                                   current_labels, n_classes,
                                                   2, ngram_scores)

            print()

        # Get next input sample.
        image = images[i % n_examples]
        sample = rank_order(datum=image, time=time, dt=dt)
        inpts = {'X': sample}

        # Run the network on the input.
        network.run(inpts=inpts, time=time)

        retries = 0
        while spikes['Y'].get('s').sum() < 5 and retries < 3:
            retries += 1
            image *= 2
            sample = rank_order(datum=image, time=time, dt=dt)
            inpts = {'X': sample}
            network.run(inpts=inpts, time=time)

        # Add to spikes recording.
        spike_record[i % update_interval] = spikes['Y'].get('s').t()

        # Optionally plot various simulation information.
        if plot:
            _input = images[i % n_examples].view(28, 28)
            reconstruction = inpts['X'].view(time, 784).sum(0).view(28, 28)
            _spikes = {layer: spikes[layer].get('s') for layer in spikes}
            input_exc_weights = network.connections['X', 'Y'].w
            square_weights = get_square_weights(
                input_exc_weights.view(784, n_neurons), n_sqrt, 28)
            square_assignments = get_square_assignments(assignments, n_sqrt)

            # inpt_axes, inpt_ims = plot_input(_input, reconstruction, label=labels[i], axes=inpt_axes, ims=inpt_ims)
            spike_ims, spike_axes = plot_spikes(_spikes,
                                                ims=spike_ims,
                                                axes=spike_axes)
            weights_im = plot_weights(square_weights, im=weights_im, wmax=0.25)
            # assigns_im = plot_assignments(square_assignments, im=assigns_im)
            # perf_ax = plot_performance(curves, ax=perf_ax)

            plt.pause(1e-8)

        network.reset_()  # Reset state variables.

    print(f'Progress: {n_examples} / {n_examples} ({t() - start:.4f} seconds)')

    i += 1

    if i % len(labels) == 0:
        current_labels = labels[-update_interval:]
    else:
        current_labels = labels[i % len(images) - update_interval:i %
                                len(images)]

    # Update and print accuracy evaluations.
    curves, predictions = update_curves(curves,
                                        current_labels,
                                        n_classes,
                                        spike_record=spike_record,
                                        assignments=assignments,
                                        proportions=proportions,
                                        ngram_scores=ngram_scores,
                                        n=2)
    print_results(curves)

    if train:
        if any([x[-1] > best_accuracy for x in curves.values()]):
            print('New best accuracy! Saving network parameters to disk.')

            # Save network to disk.
            if train:
                path = os.path.join('..', '..', 'params', data, model)
                if not os.path.isdir(path):
                    os.makedirs(path)

                network.save(os.path.join(path, model_name + '.pt'))
                path = os.path.join(
                    path, '_'.join(['auxiliary', model_name]) + '.pt')
                torch.save((assignments, proportions, rates, ngram_scores),
                           open(path, 'wb'))

    if train:
        print('\nTraining complete.\n')
    else:
        print('\nTest complete.\n')

    print('Average accuracies:\n')
    for scheme in curves.keys():
        print('\t%s: %.2f' % (scheme, float(np.mean(curves[scheme]))))

    # Save accuracy curves to disk.
    path = os.path.join('..', '..', 'curves', data, model)
    if not os.path.isdir(path):
        os.makedirs(path)

    if train:
        to_write = ['train'] + params
    else:
        to_write = ['test'] + params

    to_write = [str(x) for x in to_write]
    f = '_'.join(to_write) + '.pt'

    torch.save((curves, update_interval, n_examples),
               open(os.path.join(path, f), 'wb'))

    # Save results to disk.
    path = os.path.join('..', '..', 'results', data, model)
    if not os.path.isdir(path):
        os.makedirs(path)

    results = [
        np.mean(curves['all']),
        np.mean(curves['proportion']),
        np.mean(curves['ngram']),
        np.max(curves['all']),
        np.max(curves['proportion']),
        np.max(curves['ngram'])
    ]

    if train:
        to_write = params + results
    else:
        to_write = test_params + results

    to_write = [str(x) for x in to_write]

    if train:
        name = 'train.csv'
    else:
        name = 'test.csv'

    if not os.path.isfile(os.path.join(path, name)):
        with open(os.path.join(path, name), 'w') as f:
            if train:
                f.write(
                    'random_seed,n_neurons,n_train,inhib,time,lr,lr_decay,theta_plus,theta_decay,'
                    'progress_interval,update_interval,mean_all_activity,mean_proportion_weighting,'
                    'mean_ngram,max_all_activity,max_proportion_weighting,max_ngram\n'
                )
            else:
                f.write(
                    'random_seed,n_neurons,n_train,n_test,inhib,time,lr,lr_decay,theta_plus,theta_decay,'
                    'progress_interval,update_interval,mean_all_activity,mean_proportion_weighting,'
                    'mean_ngram,max_all_activity,max_proportion_weighting,max_ngram\n'
                )

    with open(os.path.join(path, name), 'a') as f:
        f.write(','.join(to_write) + '\n')
Ejemplo n.º 6
0
def main(seed=0,
         n_neurons=100,
         n_train=60000,
         n_test=10000,
         c_low=2.5,
         c_high=250,
         p_low=0.1,
         time=250,
         dt=1,
         theta_plus=0.05,
         theta_decay=1e-7,
         intensity=1,
         progress_interval=10,
         update_interval=250,
         plot=False,
         train=True,
         gpu=False):

    assert n_train % update_interval == 0 and n_test % update_interval == 0,\
        'No. examples must be divisible by update_interval'

    params = [
        seed, n_neurons, n_train, c_low, c_high, p_low, time, dt, theta_plus,
        theta_decay, intensity, progress_interval, update_interval
    ]

    model_name = '_'.join([str(x) for x in params])

    if not train:
        test_params = [
            seed, n_neurons, n_train, n_test, c_low, c_high, p_low, time, dt,
            theta_plus, theta_decay, intensity, progress_interval,
            update_interval
        ]

    np.random.seed(seed)

    if gpu:
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.manual_seed_all(seed)
    else:
        torch.manual_seed(seed)

    n_examples = n_train if train else n_test
    n_sqrt = int(np.ceil(np.sqrt(n_neurons)))
    n_classes = 10

    if train:
        iter_increase = int(n_train * p_low)
        print(f'Iteration to increase from c_low to c_high: {iter_increase}\n')

    # Build network.
    if train:
        network = Network(dt=dt)
        input_layer = Input(n=784, traces=True)
        exc_layer = DiehlAndCookNodes(n=n_neurons, traces=True)

        w = torch.rand(input_layer.n, exc_layer.n)
        input_exc_conn = Connection(input_layer,
                                    exc_layer,
                                    w=w,
                                    update_rule=PostPre,
                                    norm=78.4,
                                    nu=(1e-4, 1e-2),
                                    wmax=1.0)

        w = torch.zeros(exc_layer.n, exc_layer.n)
        for k1 in range(n_neurons):
            for k2 in range(n_neurons):
                if k1 != k2:
                    x1, y1 = k1 // np.sqrt(n_neurons), k1 % np.sqrt(n_neurons)
                    x2, y2 = k2 // np.sqrt(n_neurons), k2 % np.sqrt(n_neurons)

                    w[k1, k2] = max(
                        -c_high,
                        -c_low * np.sqrt(euclidean([x1, y1], [x2, y2])))

        recurrent_conn = Connection(exc_layer, exc_layer, w=w)

        network.add_layer(input_layer, name='X')
        network.add_layer(exc_layer, name='Y')
        network.add_connection(input_exc_conn, source='X', target='Y')
        network.add_connection(recurrent_conn, source='Y', target='Y')
    else:
        network = load_network(os.path.join(params_path, model_name + '.pt'))
        network.connections['X', 'Y'].update_rule = NoOp(
            connection=network.connections['X', 'Y'],
            nu=network.connections['X', 'Y'].nu)
        network.layers['Y'].theta_decay = 0
        network.layers['Y'].theta_plus = 0

    # Load MNIST data.
    dataset = MNIST(data_path, download=True)

    if train:
        images, labels = dataset.get_train()
    else:
        images, labels = dataset.get_test()

    images = images.view(-1, 784)
    images *= intensity

    # Record spikes during the simulation.
    spike_record = torch.zeros(update_interval, int(time / dt), n_neurons)

    # Neuron assignments and spike proportions.
    if train:
        assignments = -torch.ones_like(torch.Tensor(n_neurons))
        proportions = torch.zeros_like(torch.Tensor(n_neurons, 10))
        rates = torch.zeros_like(torch.Tensor(n_neurons, 10))
        ngram_scores = {}
    else:
        path = os.path.join(params_path,
                            '_'.join(['auxiliary', model_name]) + '.pt')
        assignments, proportions, rates, ngram_scores = torch.load(
            open(path, 'rb'))

    # Sequence of accuracy estimates.
    curves = {'all': [], 'proportion': [], 'ngram': []}
    predictions = {scheme: torch.Tensor().long() for scheme in curves.keys()}

    if train:
        best_accuracy = 0

    spikes = {}
    for layer in set(network.layers) - {'X'}:
        spikes[layer] = Monitor(network.layers[layer],
                                state_vars=['s'],
                                time=int(time / dt))
        network.add_monitor(spikes[layer], name='%s_spikes' % layer)

    # Train the network.
    if train:
        print('\nBegin training.\n')
    else:
        print('\nBegin test.\n')

    inpt_axes = None
    inpt_ims = None
    spike_ims = None
    spike_axes = None
    weights_im = None
    assigns_im = None
    perf_ax = None

    start = t()
    for i in range(n_examples):
        if train and i == iter_increase:
            print(
                '\nChanging inhibition from low and graded to high and constant.\n'
            )
            w = -c_high * (torch.ones(n_neurons, n_neurons) -
                           torch.diag(torch.ones(n_neurons)))
            network.connections['Y', 'Y'].w = w

        if i % progress_interval == 0:
            print(f'Progress: {i} / {n_examples} ({t() - start:.4f} seconds)')
            start = t()

        if i % update_interval == 0 and i > 0:
            if i % len(labels) == 0:
                current_labels = labels[-update_interval:]
            else:
                current_labels = labels[i % len(images) - update_interval:i %
                                        len(images)]

            # Update and print accuracy evaluations.
            curves, preds = update_curves(curves,
                                          current_labels,
                                          n_classes,
                                          spike_record=spike_record,
                                          assignments=assignments,
                                          proportions=proportions,
                                          ngram_scores=ngram_scores,
                                          n=2)
            print_results(curves)

            for scheme in preds:
                predictions[scheme] = torch.cat(
                    [predictions[scheme], preds[scheme]], -1)

            # Save accuracy curves to disk.
            to_write = ['train'] + params if train else ['test'] + params
            f = '_'.join([str(x) for x in to_write]) + '.pt'
            torch.save((curves, update_interval, n_examples),
                       open(os.path.join(curves_path, f), 'wb'))

            if train:
                if any([x[-1] > best_accuracy for x in curves.values()]):
                    print(
                        'New best accuracy! Saving network parameters to disk.'
                    )

                    # Save network to disk.
                    network.save(os.path.join(params_path, model_name + '.pt'))
                    path = os.path.join(
                        params_path,
                        '_'.join(['auxiliary', model_name]) + '.pt')
                    torch.save((assignments, proportions, rates, ngram_scores),
                               open(path, 'wb'))

                    best_accuracy = max([x[-1] for x in curves.values()])

                # Assign labels to excitatory layer neurons.
                assignments, proportions, rates = assign_labels(
                    spike_record, labels[i - update_interval:i], 10, rates)

                # Compute ngram scores.
                ngram_scores = update_ngram_scores(
                    spike_record, labels[i - update_interval:i], 10, 2,
                    ngram_scores)

            print()

        # Get next input sample.
        image = images[i]
        sample = poisson(datum=image, time=int(time / dt))
        inpts = {'X': sample}

        # Run the network on the input.
        network.run(inpts=inpts, time=time)

        retries = 0
        while spikes['Y'].get('s').sum() < 5 and retries < 3:
            retries += 1
            image *= 2
            sample = poisson(datum=image, time=int(time / dt))
            inpts = {'X': sample}
            network.run(inpts=inpts, time=time)

        # Add to spikes recording.
        spike_record[i % update_interval] = spikes['Y'].get('s').t()

        # Optionally plot various simulation information.
        if plot:
            inpt = inpts['X'].view(time, 784).sum(0).view(28, 28)
            _spikes = {layer: spikes[layer].get('s') for layer in spikes}
            input_exc_weights = network.connections['X', 'Y'].w
            square_weights = get_square_weights(
                input_exc_weights.view(784, n_neurons), n_sqrt, 28)
            square_assignments = get_square_assignments(assignments, n_sqrt)

            # inpt_axes, inpt_ims = plot_input(images[i].view(28, 28), inpt, label=labels[i], axes=inpt_axes, ims=inpt_ims)
            spike_ims, spike_axes = plot_spikes(_spikes,
                                                ims=spike_ims,
                                                axes=spike_axes)
            weights_im = plot_weights(square_weights, im=weights_im)
            # assigns_im = plot_assignments(square_assignments, im=assigns_im)
            # perf_ax = plot_performance(curves, ax=perf_ax)

            plt.pause(1e-8)

        network.reset_()  # Reset state variables.

    print(f'Progress: {n_examples} / {n_examples} ({t() - start:.4f} seconds)')

    i += 1

    if i % len(labels) == 0:
        current_labels = labels[-update_interval:]
    else:
        current_labels = labels[i % len(images) - update_interval:i %
                                len(images)]

    # Update and print accuracy evaluations.
    curves, preds = update_curves(curves,
                                  current_labels,
                                  n_classes,
                                  spike_record=spike_record,
                                  assignments=assignments,
                                  proportions=proportions,
                                  ngram_scores=ngram_scores,
                                  n=2)
    print_results(curves)

    for scheme in preds:
        predictions[scheme] = torch.cat([predictions[scheme], preds[scheme]],
                                        -1)

    if train:
        if any([x[-1] > best_accuracy for x in curves.values()]):
            print('New best accuracy! Saving network parameters to disk.')

            # Save network to disk.
            network.save(os.path.join(params_path, model_name + '.pt'))
            path = os.path.join(params_path,
                                '_'.join(['auxiliary', model_name]) + '.pt')
            torch.save((assignments, proportions, rates, ngram_scores),
                       open(path, 'wb'))

    if train:
        print('\nTraining complete.\n')
    else:
        print('\nTest complete.\n')

    print('Average accuracies:\n')
    for scheme in curves.keys():
        print(f'\t%s: %.2f' % (scheme, float(np.mean(curves[scheme]))))

    # Save accuracy curves to disk.
    to_write = ['train'] + params if train else ['test'] + params
    to_write = [str(x) for x in to_write]
    f = '_'.join(to_write) + '.pt'
    torch.save((curves, update_interval, n_examples),
               open(os.path.join(curves_path, f), 'wb'))

    results = [
        np.mean(curves['all']),
        np.mean(curves['proportion']),
        np.mean(curves['ngram']),
        np.max(curves['all']),
        np.max(curves['proportion']),
        np.max(curves['ngram'])
    ]

    to_write = params + results if train else test_params + results
    to_write = [str(x) for x in to_write]
    name = 'train.csv' if train else 'test.csv'

    if not os.path.isfile(os.path.join(results_path, name)):
        with open(os.path.join(results_path, name), 'w') as f:
            if train:
                f.write(
                    'random_seed,n_neurons,n_train,excite,inhib,time,timestep,theta_plus,theta_decay,'
                    'intensity,progress_interval,update_interval,mean_all_activity,mean_proportion_weighting,'
                    'mean_ngram,max_all_activity,max_proportion_weighting,max_ngram\n'
                )
            else:
                f.write(
                    'random_seed,n_neurons,n_train,n_test,excite,inhib,time,timestep,theta_plus,theta_decay,'
                    'intensity,progress_interval,update_interval,mean_all_activity,mean_proportion_weighting,'
                    'mean_ngram,max_all_activity,max_proportion_weighting,max_ngram\n'
                )

    with open(os.path.join(results_path, name), 'a') as f:
        f.write(','.join(to_write) + '\n')

    if labels.numel() > n_examples:
        labels = labels[:n_examples]
    else:
        while labels.numel() < n_examples:
            if 2 * labels.numel() > n_examples:
                labels = torch.cat(
                    [labels, labels[:n_examples - labels.numel()]])
            else:
                labels = torch.cat([labels, labels])

    # Compute confusion matrices and save them to disk.
    confusions = {}
    for scheme in predictions:
        confusions[scheme] = confusion_matrix(labels, predictions[scheme])

    to_write = ['train'] + params if train else ['test'] + test_params
    f = '_'.join([str(x) for x in to_write]) + '.pt'
    torch.save(confusions, os.path.join(confusion_path, f))

    print()
Ejemplo n.º 7
0
def main(seed=0, n_train=60000, n_test=10000, c_low=1, c_high=25, p_low=0.5, kernel_size=(16,), stride=(2,),
         n_filters=25, crop=4, lr=0.01, lr_decay=1, time=100, dt=1, theta_plus=0.05, theta_decay=1e-7, intensity=1,
         norm=0.2, progress_interval=10, update_interval=250, plot=False, train=True, gpu=False):

    assert n_train % update_interval == 0 and n_test % update_interval == 0, \
        'No. examples must be divisible by update_interval'

    params = [
        seed, kernel_size, stride, n_filters, crop, lr, lr_decay, n_train, c_low, c_high, p_low, time, dt,
        theta_plus, theta_decay, intensity, norm, progress_interval, update_interval
    ]

    model_name = '_'.join([str(x) for x in params])

    if not train:
        test_params = [
            seed, kernel_size, stride, n_filters, crop, lr, lr_decay, n_train, n_test, c_low, c_high, p_low, time, dt,
            theta_plus, theta_decay, intensity, norm, progress_interval, update_interval
        ]

    np.random.seed(seed)

    if gpu:
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.manual_seed_all(seed)
    else:
        torch.manual_seed(seed)

    side_length = 28 - crop * 2
    n_inpt = side_length ** 2
    input_shape = [side_length, side_length]
    n_examples = n_train if train else n_test
    n_classes = 10

    if _pair(kernel_size) == input_shape:
        conv_size = [1, 1]
    else:
        conv_size = (int((input_shape[0] - _pair(kernel_size)[0]) / _pair(stride)[0]) + 1,
                     int((input_shape[1] - _pair(kernel_size)[1]) / _pair(stride)[1]) + 1)

    # Build network.
    if train:
        network = Network()

        input_layer = Input(n=n_inpt, traces=True, trace_tc=5e-2)
        output_layer = DiehlAndCookNodes(
            n=n_filters * conv_size[0] * conv_size[1], traces=True, rest=-65.0, reset=-60.0,
            thresh=-52.0, refrac=5, decay=1e-2, trace_tc=5e-2, theta_plus=theta_plus, theta_decay=theta_decay
        )
        input_output_conn = LocallyConnectedConnection(
            input_layer, output_layer, kernel_size=kernel_size, stride=stride, n_filters=n_filters,
            nu=[0, lr], update_rule=PostPre, wmin=0, wmax=1, norm=norm, input_shape=input_shape
        )

        w = torch.zeros(n_filters, *conv_size, n_filters, *conv_size)
        for fltr1 in range(n_filters):
            for fltr2 in range(n_filters):
                if fltr1 != fltr2:
                    for j in range(conv_size[0]):
                        for k in range(conv_size[1]):
                            x1, y1 = fltr1 // np.sqrt(n_filters), fltr1 % np.sqrt(n_filters)
                            x2, y2 = fltr2 // np.sqrt(n_filters), fltr2 % np.sqrt(n_filters)

                            w[fltr1, j, k, fltr2, j, k] = max(-c_high, -c_low * np.sqrt(euclidean([x1, y1], [x2, y2])))

        w = w.view(n_filters * conv_size[0] * conv_size[1], n_filters * conv_size[0] * conv_size[1])
        recurrent_conn = Connection(output_layer, output_layer, w=w)

        plt.matshow(w)
        plt.colorbar()

        network.add_layer(input_layer, name='X')
        network.add_layer(output_layer, name='Y')
        network.add_connection(input_output_conn, source='X', target='Y')
        network.add_connection(recurrent_conn, source='Y', target='Y')
    else:
        network = load_network(os.path.join(params_path, model_name + '.pt'))
        network.connections['X', 'Y'].update_rule = NoOp(
            connection=network.connections['X', 'Y'], nu=network.connections['X', 'Y'].nu
        )
        network.layers['Y'].theta_decay = 0
        network.layers['Y'].theta_plus = 0

    conv_size = network.connections['X', 'Y'].conv_size
    locations = network.connections['X', 'Y'].locations
    conv_prod = int(np.prod(conv_size))
    n_neurons = n_filters * conv_prod

    # Voltage recording for excitatory and inhibitory layers.
    voltage_monitor = Monitor(network.layers['Y'], ['v'], time=time)
    network.add_monitor(voltage_monitor, name='output_voltage')

    # Load MNIST data.
    dataset = MNIST(path=data_path, download=True)

    if train:
        images, labels = dataset.get_train()
    else:
        images, labels = dataset.get_test()

    images *= intensity
    images = images[:, crop:-crop, crop:-crop]

    # Record spikes during the simulation.
    spike_record = torch.zeros(update_interval, time, n_neurons)

    # Neuron assignments and spike proportions.
    if train:
        assignments = -torch.ones_like(torch.Tensor(n_neurons))
        proportions = torch.zeros_like(torch.Tensor(n_neurons, 10))
        rates = torch.zeros_like(torch.Tensor(n_neurons, 10))
        ngram_scores = {}
    else:
        path = os.path.join(params_path, '_'.join(['auxiliary', model_name]) + '.pt')
        assignments, proportions, rates, ngram_scores = torch.load(open(path, 'rb'))

    if train:
        best_accuracy = 0

    # Sequence of accuracy estimates.
    curves = {'all': [], 'proportion': [], 'ngram': []}
    predictions = {
        scheme: torch.Tensor().long() for scheme in curves.keys()
    }

    spikes = {}
    for layer in set(network.layers):
        spikes[layer] = Monitor(network.layers[layer], state_vars=['s'], time=time)
        network.add_monitor(spikes[layer], name=f'{layer}_spikes')

    # Train the network.
    if train:
        print('\nBegin training.\n')
    else:
        print('\nBegin test.\n')

    spike_ims = None
    spike_axes = None
    weights_im = None

    # Calculate linear increase every update interval.
    if train:
        n_increase = int(p_low * n_examples) / update_interval
        increase = (c_high - c_low) / n_increase
        increases = 0
        inhib = c_low

    start = t()
    for i in range(n_examples):
        if i % progress_interval == 0:
            print(f'Progress: {i} / {n_examples} ({t() - start:.4f} seconds)')
            start = t()

        if i % update_interval == 0 and i > 0:
            if train:
                network.connections['X', 'Y'].update_rule.nu[1] *= lr_decay

                if increases < n_increase:
                    inhib = inhib + increase

                    print(f'\nIncreasing inhibition to {inhib}.\n')

                    w = torch.zeros(n_filters, *conv_size, n_filters, *conv_size)
                    for fltr1 in range(n_filters):
                        for fltr2 in range(n_filters):
                            if fltr1 != fltr2:
                                for j in range(conv_size[0]):
                                    for k in range(conv_size[1]):
                                        x1, y1 = fltr1 // np.sqrt(n_filters), fltr1 % np.sqrt(n_filters)
                                        x2, y2 = fltr2 // np.sqrt(n_filters), fltr2 % np.sqrt(n_filters)

                                        w[fltr1, j, k, fltr2, j, k] = max(-c_high, -c_low * np.sqrt(euclidean([x1, y1], [x2, y2])))

                    w = w.view(n_filters * conv_size[0] * conv_size[1], n_filters * conv_size[0] * conv_size[1])
                    network.connections['Y', 'Y'].w = w

            if i % len(labels) == 0:
                current_labels = labels[-update_interval:]
            else:
                current_labels = labels[i % len(images) - update_interval:i % len(images)]

            # Update and print accuracy evaluations.
            curves, preds = update_curves(
                curves, current_labels, n_classes, spike_record=spike_record, assignments=assignments,
                proportions=proportions, ngram_scores=ngram_scores, n=2
            )
            print_results(curves)

            for scheme in preds:
                predictions[scheme] = torch.cat([predictions[scheme], preds[scheme]], -1)

            # Save accuracy curves to disk.
            to_write = ['train'] + params if train else ['test'] + params
            f = '_'.join([str(x) for x in to_write]) + '.pt'
            torch.save((curves, update_interval, n_examples), open(os.path.join(curves_path, f), 'wb'))

            if train:
                if any([x[-1] > best_accuracy for x in curves.values()]):
                    print('New best accuracy! Saving network parameters to disk.')

                    # Save network to disk.
                    network.save(os.path.join(params_path, model_name + '.pt'))
                    path = os.path.join(params_path, '_'.join(['auxiliary', model_name]) + '.pt')
                    torch.save((assignments, proportions, rates, ngram_scores), open(path, 'wb'))

                    best_accuracy = max([x[-1] for x in curves.values()])

                # Assign labels to excitatory layer neurons.
                assignments, proportions, rates = assign_labels(spike_record, current_labels, 10, rates)

                # Compute ngram scores.
                ngram_scores = update_ngram_scores(spike_record, current_labels, 10, 2, ngram_scores)

            print()

        # Get next input sample.
        image = images[i % update_interval].contiguous().view(-1)
        sample = poisson(datum=image, time=time, dt=dt)
        inpts = {'X': sample}

        # Run the network on the input.
        network.run(inpts=inpts, time=time)

        retries = 0
        while spikes['Y'].get('s').sum() < 5 and retries < 3:
            retries += 1
            image *= 2
            sample = poisson(datum=image, time=time, dt=dt)
            inpts = {'X': sample}
            network.run(inpts=inpts, time=time)

        # Add to spikes recording.
        spike_record[i % update_interval] = spikes['Y'].get('s').t()

        # Optionally plot various simulation information.
        if plot:
            _spikes = {
                'X': spikes['X'].get('s').view(side_length ** 2, time),
                'Y': spikes['Y'].get('s').view(n_filters * conv_prod, time)
            }

            spike_ims, spike_axes = plot_spikes(spikes=_spikes, ims=spike_ims, axes=spike_axes)
            weights_im = plot_locally_connected_weights(
                network.connections[('X', 'Y')].w, n_filters, kernel_size, conv_size, locations, side_length, im=weights_im
            )

            plt.pause(1e-8)

        network.reset_()  # Reset state variables.

    print(f'Progress: {n_examples} / {n_examples} ({t() - start:.4f} seconds)')

    i += 1

    if i % len(labels) == 0:
        current_labels = labels[-update_interval:]
    else:
        current_labels = labels[i % len(images) - update_interval:i % len(images)]

    # Update and print accuracy evaluations.
    curves, preds = update_curves(
        curves, current_labels, n_classes, spike_record=spike_record, assignments=assignments,
        proportions=proportions, ngram_scores=ngram_scores, n=2
    )
    print_results(curves)

    for scheme in preds:
        predictions[scheme] = torch.cat([predictions[scheme], preds[scheme]], -1)

    if train:
        if any([x[-1] > best_accuracy for x in curves.values()]):
            print('New best accuracy! Saving network parameters to disk.')

            # Save network to disk.
            network.save(os.path.join(params_path, model_name + '.pt'))
            path = os.path.join(params_path, '_'.join(['auxiliary', model_name]) + '.pt')
            torch.save((assignments, proportions, rates, ngram_scores), open(path, 'wb'))

    if train:
        print('\nTraining complete.\n')
    else:
        print('\nTest complete.\n')

    print('Average accuracies:\n')
    for scheme in curves.keys():
        print('\t%s: %.2f' % (scheme, float(np.mean(curves[scheme]))))

    # Save accuracy curves to disk.
    to_write = ['train'] + params if train else ['test'] + params
    f = '_'.join([str(x) for x in to_write]) + '.pt'
    torch.save((curves, update_interval, n_examples), open(os.path.join(curves_path, f), 'wb'))

    # Save results to disk.
    results = [
        np.mean(curves['all']), np.mean(curves['proportion']), np.mean(curves['ngram']),
        np.max(curves['all']), np.max(curves['proportion']), np.max(curves['ngram'])
    ]

    to_write = params + results if train else test_params + results
    to_write = [str(x) for x in to_write]
    name = 'train.csv' if train else 'test.csv'

    if not os.path.isfile(os.path.join(results_path, name)):
        with open(os.path.join(results_path, name), 'w') as f:
            if train:
                f.write(
                    'random_seed,kernel_size,stride,n_filters,crop,lr,lr_decay,n_train,c_low,c_high,p_low,time,timestep,theta_plus,'
                    'theta_decay,intensity,norm,progress_interval,update_interval,mean_all_activity,'
                    'mean_proportion_weighting,mean_ngram,max_all_activity,max_proportion_weighting,max_ngram\n'
                )
            else:
                f.write(
                    'random_seed,kernel_size,stride,n_filters,crop,lr,lr_decay,n_train,n_test,c_low,c_high,p_low,time,timestep,'
                    'theta_plus,theta_decay,intensity,norm,progress_interval,update_interval,mean_all_activity,'
                    'mean_proportion_weighting,mean_ngram,max_all_activity,max_proportion_weighting,max_ngram\n'
                )

    with open(os.path.join(results_path, name), 'a') as f:
        f.write(','.join(to_write) + '\n')

    if labels.numel() > n_examples:
        labels = labels[:n_examples]
    else:
        while labels.numel() < n_examples:
            if 2 * labels.numel() > n_examples:
                labels = torch.cat([labels, labels[:n_examples - labels.numel()]])
            else:
                labels = torch.cat([labels, labels])

    # Compute confusion matrices and save them to disk.
    confusions = {}
    for scheme in predictions:
        confusions[scheme] = confusion_matrix(labels, predictions[scheme])

    to_write = ['train'] + params if train else ['test'] + test_params
    f = '_'.join([str(x) for x in to_write]) + '.pt'
    torch.save(confusions, os.path.join(confusion_path, f))
        if train:
            if any([x[-1] > best_accuracy for x in curves.values()]):
                print('New best accuracy! Saving network parameters to disk.')

                # Save network to disk.
                network.save(os.path.join(params_path, model_name + '.pt'))
                path = os.path.join(params_path, '_'.join(['auxiliary', model_name]) + '.pt')
                torch.save((assignments, proportions, rates, ngram_scores), open(path, 'wb'))
                best_accuracy = max([x[-1] for x in curves.values()])

            # Assign labels to excitatory layer neurons.
            assignments, proportions, rates = assign_labels(spike_record, current_labels, 10, rates)

            # Compute ngram scores.
            ngram_scores = update_ngram_scores(spike_record, current_labels, 10, 2, ngram_scores)

        print()

    # Get next input sample.
    image = images[i]
    sample = poisson(datum=image, time=time, dt=dt)
    inpts = {'X': sample}

    # Run the network on the input.
    network.run(inpts=inpts, time=time)

    retries = 0
    while spikes['Y'].get('s').sum() < 5 and retries < 3:
        retries += 1
        image *= 2
                    network.save(os.path.join(path, model_name + '.pt'))
                    path = os.path.join(
                        path, '_'.join(['auxiliary', model_name]) + '.pt')
                    torch.save((assignments, proportions, rates, ngram_scores),
                               open(path, 'wb'))

                best_accuracy = max([x[-1] for x in curves.values()])

            # Assign labels to excitatory layer neurons.
            assignments, proportions, rates = assign_labels(
                spike_record, labels[i - update_interval:i], 10, rates)

            # Compute ngram scores.
            ngram_scores = update_ngram_scores(spike_record,
                                               labels[i - update_interval:i],
                                               10, 2, ngram_scores)

        print()

    # Get next input sample.
    image = images[i]
    sample = poisson(datum=image, time=time, dt=dt)
    inpts = {'X': sample}

    # Run the network on the input.
    network.run(inpts=inpts, time=time)

    retries = 0
    while spikes['Ae'].get('s').sum() < 5 and retries < 3:
        retries += 1
Ejemplo n.º 10
0
def main():
    seed = 0  #random seed
    n_neurons = 100  # number of neurons per layer
    n_train = 60000  # number of traning examples to go through
    n_epochs = 1
    inh = 120.0  # strength of synapses from inh. layer to exci. layer
    exc = 22.5
    lr = 1e-2  # learning rate
    lr_decay = 0.99  # learning rate decay
    time = 350  # duration of each sample after running through possion encoder
    dt = 1  # timestep
    theta_plus = 0.05  # post spike threshold increase
    tc_theta_decay = 1e7  # threshold decay
    intensity = 0.25  # number to multiply input Diehl Cook maja 0.25
    progress_interval = 10
    update_interval = 250
    plot = False
    gpu = False
    load_network = False  # load network from disk
    n_classes = 10
    n_sqrt = int(np.ceil(np.sqrt(n_neurons)))
    # TRAINING
    save_weights_fn = "plots_snn/weights/weights_train.png"
    save_performance_fn = "plots_snn/performance/performance_train.png"
    save_assaiments_fn = "plots_snn/assaiments/assaiments_train.png"
    directorys = [
        "plots_snn", "plots_snn/weights", "plots_snn/performance",
        "plots_snn/assaiments"
    ]
    for directory in directorys:
        if not os.path.exists(directory):
            os.makedirs(directory)
    assert n_train % update_interval == 0
    np.random.seed(seed)

    if gpu:
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.manual_seed_all(seed)
    else:
        torch.manual_seed(seed)

    # Build network
    if load_network:
        network = load('net_output.pt')  # here goes file with network to load
    else:
        network = DiehlAndCook2015(
            n_inpt=784,
            n_neurons=n_neurons,
            exc=exc,
            inh=inh,
            dt=dt,
            norm=78.4,
            nu=(1e-4, lr),
            theta_plus=theta_plus,
            inpt_shape=(1, 28, 28),
        )
    if gpu:
        network.to("cuda")
    # Pull dataset
    data, targets = torch.load(
        'data/MNIST/TorchvisionDatasetWrapper/processed/training.pt')
    data = data * intensity
    trainset = torch.utils.data.TensorDataset(data, targets)
    trainloader = torch.utils.data.DataLoader(trainset,
                                              batch_size=1,
                                              shuffle=False,
                                              num_workers=1)

    # Spike recording
    spike_record = torch.zeros(update_interval, time, n_neurons)
    full_spike_record = torch.zeros(n_train, n_neurons).long()

    # Intialization
    if load_network:
        assignments, proportions, rates, ngram_scores = torch.load(
            'parameter_output.pt')
    else:
        assignments = -torch.ones_like(torch.Tensor(n_neurons))
        proportions = torch.zeros_like(torch.Tensor(n_neurons, n_classes))
        rates = torch.zeros_like(torch.Tensor(n_neurons, n_classes))
        ngram_scores = {}
    curves = {'all': [], 'proportion': [], 'ngram': []}
    predictions = {scheme: torch.Tensor().long() for scheme in curves.keys()}
    best_accuracy = 0

    # Initilize spike records
    spikes = {}
    for layer in set(network.layers):
        spikes[layer] = Monitor(network.layers[layer],
                                state_vars=['s'],
                                time=time)
        network.add_monitor(spikes[layer], name='%s_spikes' % layer)
    i = 0
    current_labels = torch.zeros(update_interval)
    inpt_axes = None
    inpt_ims = None
    spike_ims = None
    spike_axes = None
    weights_im = None
    assigns_im = None
    perf_ax = None
    # train
    train_time = t.time()

    current_labels = torch.zeros(update_interval)
    time1 = t.time()
    for j in range(n_epochs):
        i = 0
        for sample, label in trainloader:
            if i >= n_train:
                break
            if i % progress_interval == 0:
                print(f'Progress: {i} / {n_train} took {(t.time()-time1)} s')
                time1 = t.time()
            if i % update_interval == 0 and i > 0:
                #network.connections['X','Y'].update_rule.nu[1] *= lr_decay
                curves, preds = update_curves(curves,
                                              current_labels,
                                              n_classes,
                                              spike_record=spike_record,
                                              assignments=assignments,
                                              proportions=proportions,
                                              ngram_scores=ngram_scores,
                                              n=2)
                print_results(curves)
                for scheme in preds:
                    predictions[scheme] = torch.cat(
                        [predictions[scheme], preds[scheme]], -1)
                # Accuracy curves
                if any([x[-1] > best_accuracy for x in curves.values()]):
                    print(
                        'New best accuracy! Saving network parameters to disk.'
                    )

                    # Save network and parameters to disk.
                    network.save(os.path.join('net_output.pt'))
                    path = "parameters_output.pt"
                    torch.save((assignments, proportions, rates, ngram_scores),
                               open(path, 'wb'))
                    best_accuracy = max([x[-1] for x in curves.values()])
                assignments, proportions, rates = assign_labels(
                    spike_record, current_labels, n_classes, rates)
                ngram_scores = update_ngram_scores(spike_record,
                                                   current_labels, n_classes,
                                                   2, ngram_scores)
            sample_enc = poisson(datum=sample, time=time, dt=dt)
            inpts = {'X': sample_enc}
            # Run the network on the input.
            network.run(inputs=inpts, time=time)
            retries = 0
            # Spikes reocrding
            spike_record[i % update_interval] = spikes['Ae'].get('s').view(
                time, n_neurons)
            full_spike_record[i] = spikes['Ae'].get('s').view(
                time, n_neurons).sum(0).long()
            if plot:
                _input = sample.view(28, 28)
                reconstruction = inpts['X'].view(time, 784).sum(0).view(28, 28)
                _spikes = {layer: spikes[layer].get('s') for layer in spikes}
                input_exc_weights = network.connections[('X', 'Ae')].w
                square_assignments = get_square_assignments(
                    assignments, n_sqrt)

                assigns_im = plot_assignments(square_assignments,
                                              im=assigns_im)
                if i % update_interval == 0:
                    square_weights = get_square_weights(
                        input_exc_weights.view(784, n_neurons), n_sqrt, 28)
                    weights_im = plot_weights(square_weights, im=weights_im)
                    [weights_im,
                     save_weights_fn] = plot_weights(square_weights,
                                                     im=weights_im,
                                                     save=save_weights_fn)
                inpt_axes, inpt_ims = plot_input(_input,
                                                 reconstruction,
                                                 label=label,
                                                 axes=inpt_axes,
                                                 ims=inpt_ims)
                spike_ims, spike_axes = plot_spikes(_spikes,
                                                    ims=spike_ims,
                                                    axes=spike_axes)
                assigns_im = plot_assignments(square_assignments,
                                              im=assigns_im,
                                              save=save_assaiments_fn)
                perf_ax = plot_performance(curves,
                                           ax=perf_ax,
                                           save=save_performance_fn)
                plt.pause(1e-8)
            current_labels[i % update_interval] = label[0]
            network.reset_state_variables()
            if i % 10 == 0 and i > 0:
                preds = all_activity(
                    spike_record[i % update_interval - 10:i % update_interval],
                    assignments, n_classes)
                print(f'Predictions: {(preds * 1.0).numpy()}')
                print(
                    f'True value:  {current_labels[i % update_interval - 10:i % update_interval].numpy()}'
                )
            i += 1

        print(f'Number of epochs {j}/{n_epochs+1}')
        torch.save(network.state_dict(), 'net_final.pt')
        path = "parameters_final.pt"
        torch.save((assignments, proportions, rates, ngram_scores),
                   open(path, 'wb'))
    print("Training completed. Training took " +
          str((t.time() - train_time) / 6) + " min.")
    print("Saving network...")
    network.save(os.path.join('net_final.pt'))
    torch.save((assignments, proportions, rates, ngram_scores),
               open('parameters_final.pt', 'wb'))
    print("Network saved.")