Ejemplo n.º 1
0
def custom_func_track_markers(all_pn: PenaltyNodeList, first_marker: str,
                              second_marker: str) -> MX:
    # Get the index of the markers from their name
    marker_0_idx = biorbd.marker_index(all_pn.nlp.model, first_marker)
    marker_1_idx = biorbd.marker_index(all_pn.nlp.model, second_marker)

    # Convert the function to the required format and then subtract
    markers = BiorbdInterface.mx_to_cx("markers", all_pn.nlp.model.markers,
                                       all_pn.nlp.states["q"])
    return markers[:, marker_1_idx] - markers[:, marker_0_idx]
Ejemplo n.º 2
0
    def set_idx_columns(penalty: PenaltyOption, all_pn: PenaltyNodeList,
                        index: Union[str, int, list, tuple], _type: str):
        """
        Simple penalty.cols setter for marker index and names

        Parameters
        ----------
        penalty: PenaltyOption
            The actual penalty to declare
        all_pn: PenaltyNodeList
            The penalty node elements
        index: Union[str, int, list, tuple]
            The marker to index
        _type: str
            The type of penalty (for raise error message purpose)
        """

        if penalty.cols is not None and index is not None:
            raise ValueError(
                f"It is not possible to define cols and {_type}_index since they are the same variable"
            )
        penalty.cols = index if index is not None else penalty.cols
        if penalty.cols is not None:
            penalty.cols = [
                penalty.cols
            ] if not isinstance(penalty.cols, (tuple, list)) else penalty.cols
            # Convert to int if it is str
            if _type == "marker":
                penalty.cols = [
                    cols if isinstance(cols, int) else biorbd.marker_index(
                        all_pn.nlp.model, cols) for cols in penalty.cols
                ]
Ejemplo n.º 3
0
        def superimpose_markers(
            penalty: PenaltyOption,
            all_pn: PenaltyNodeList,
            first_marker: Union[str, int],
            second_marker: Union[str, int],
            axes: Union[tuple, list] = None,
        ):
            """
            Minimize the distance between two markers
            By default this function is quadratic, meaning that it minimizes distance between them.

            Parameters
            ----------
            penalty: PenaltyOption
                The actual penalty to declare
            all_pn: PenaltyNodeList
                The penalty node elements
            first_marker: Union[str, int]
                The name or index of one of the two markers
            second_marker: Union[str, int]
                The name or index of one of the two markers
            axes: Union[tuple, list]
                The axes to project on. Default is all axes
            """

            nlp = all_pn.nlp
            first_marker_idx = (biorbd.marker_index(nlp.model, first_marker)
                                if isinstance(first_marker, str) else
                                first_marker)
            second_marker_idx = (biorbd.marker_index(nlp.model, second_marker)
                                 if isinstance(second_marker, str) else
                                 second_marker)
            PenaltyFunctionAbstract._check_idx(
                "marker", [first_marker_idx, second_marker_idx],
                nlp.model.nbMarkers())
            PenaltyFunctionAbstract.set_axes_rows(penalty, axes)
            penalty.quadratic = True if penalty.quadratic is None else penalty.quadratic

            marker_0 = BiorbdInterface.mx_to_cx(f"markers_{first_marker}",
                                                nlp.model.marker,
                                                nlp.states["q"],
                                                first_marker_idx)
            marker_1 = BiorbdInterface.mx_to_cx(f"markers_{second_marker}",
                                                nlp.model.marker,
                                                nlp.states["q"],
                                                second_marker_idx)
            return marker_1 - marker_0
Ejemplo n.º 4
0
def custom_func_track_markers(all_pn: PenaltyNodeList, first_marker: str,
                              second_marker: str, method: int) -> MX:
    """
    The used-defined objective function (This particular one mimics the ObjectiveFcn.SUPERIMPOSE_MARKERS)
    Except for the last two

    Parameters
    ----------
    all_pn: PenaltyNodeList
        The penalty node elements
    first_marker: str
        The index of the first marker in the bioMod
    second_marker: str
        The index of the second marker in the bioMod
    method: int
        Two identical ways are shown to help the new user to navigate the biorbd API

    Returns
    -------
    The cost that should be minimize in the MX format. If the cost is quadratic, do not put
    the square here, but use the quadratic=True parameter instead
    """

    # Get the index of the markers from their name
    marker_0_idx = biorbd.marker_index(all_pn.nlp.model, first_marker)
    marker_1_idx = biorbd.marker_index(all_pn.nlp.model, second_marker)

    if method == 0:
        # Convert the function to the required format and then subtract
        markers = BiorbdInterface.mx_to_cx("markers", all_pn.nlp.model.markers,
                                           all_pn.nlp.states["q"])
        markers_diff = markers[:, marker_1_idx] - markers[:, marker_0_idx]

    else:
        # Do the calculation in biorbd API and then convert to the required format
        markers = all_pn.nlp.model.markers(all_pn.nlp.states["q"].mx)
        markers_diff = markers[marker_1_idx].to_mx(
        ) - markers[marker_0_idx].to_mx()
        markers_diff = BiorbdInterface.mx_to_cx("markers", markers_diff,
                                                all_pn.nlp.states["q"])

    return markers_diff
Ejemplo n.º 5
0
        def track_marker_with_segment_axis(
            penalty: PenaltyOption,
            all_pn: PenaltyNodeList,
            marker: Union[int, str],
            segment: Union[int, str],
            axis: Axis,
        ):
            """
            Track a marker using a segment, that is aligning an axis toward the marker
            By default this function is quadratic, meaning that it minimizes the difference.

            Parameters
            ----------
            penalty: PenaltyOption
                The actual penalty to declare
            all_pn: PenaltyNodeList
                The penalty node elements
            marker: int
                Name or index of the marker to be tracked
            segment: int
                Name or index of the segment to align with the marker
            axis: Axis
                The axis that should be tracking the marker
            """

            if not isinstance(axis, Axis):
                raise RuntimeError("axis must be a bioptim.Axis")

            penalty.quadratic = True if penalty.quadratic is None else penalty.quadratic

            nlp = all_pn.nlp
            marker_idx = biorbd.marker_index(nlp.model, marker) if isinstance(
                marker, str) else marker
            segment_idx = biorbd.segment_index(
                nlp.model, segment) if isinstance(segment, str) else segment

            # Get the marker in rt reference frame
            jcs = nlp.model.globalJCS(nlp.states["q"].mx, segment_idx)
            marker = nlp.model.marker(nlp.states["q"].mx, marker_idx)
            marker.applyRT(jcs.transpose())
            marker_objective = BiorbdInterface.mx_to_cx(
                "marker", marker.to_mx(), nlp.states["q"])

            # To align an axis, the other must be equal to 0
            if penalty.rows is not None:
                raise ValueError(
                    "rows cannot be defined in track_marker_with_segment_axis")
            penalty.rows = [
                ax for ax in [Axis.X, Axis.Y, Axis.Z] if ax != axis
            ]

            return marker_objective