Ejemplo n.º 1
0
def plot_coverages(lengths, main=""):
    x = numpy.arange(0,0.5e6+1,1e4)
    y = coverages(lengths, x)

    r.plot(x/1e3, y, type="l", xlim=[0,575], lwd=2, cex=1.5,
           xlab="Read length (kb)", ylab="Coverage by reads > length",
           main=main)

    highlight_x = [0, 50e3, 100e3, 250e3, 500e3]
    highlight_y = coverages(lengths, highlight_x)
    r.points(numpy.array(highlight_x)/1e3, highlight_y, pch=20)
    r.text(numpy.array(highlight_x)/1e3, highlight_y, 
           ["{:.2f} ({:.1%})".format(i, i/highlight_y[0]) for i in highlight_y], pos=4)
    r.mtext(f"{lengths.sum()/1e6:,.1f}mb total")
Ejemplo n.º 2
0
        self.factor = self.scotts_factor()
        # Cache covariance and inverse covariance of the data
        if not hasattr(self, '_data_inv_cov'):
            self._data_covariance = atleast_2d(
                np.cov(self.dataset, rowvar=1, bias=False))
            self._data_inv_cov = linalg.inv(self._data_covariance)

        self.covariance = self._data_covariance * self.factor**2
        self.inv_cov = self._data_inv_cov / self.factor**2
        self._norm_factor = sqrt(linalg.det(2 * pi * self.covariance)) * self.n


if __name__ == '__main__':
    from biorpy import r
    from scipy import stats
    values = np.concatenate(
        [np.random.normal(size=20),
         np.random.normal(loc=6, size=30)])

    kde = stats.gaussian_kde(values)
    x = np.linspace(-5, 10, 50)
    y = kde(x)
    print y
    r.plot(x, y, type="l", col="red")

    kde2 = gaussian_kde(values)
    y2 = kde2(x)
    r.lines(x, y2, col="blue", lty=2)

    raw_input("")
Ejemplo n.º 3
0
        if not hasattr(self, '_data_inv_cov'):
            self._data_covariance = atleast_2d(np.cov(self.dataset, rowvar=1,
                                               bias=False))
            self._data_inv_cov = linalg.inv(self._data_covariance)

        self.covariance = self._data_covariance * self.factor**2
        self.inv_cov = self._data_inv_cov / self.factor**2
        self._norm_factor = sqrt(linalg.det(2*pi*self.covariance)) * self.n


if __name__ == '__main__':
    from biorpy import r
    from scipy import stats
    values = np.concatenate([np.random.normal(size=20), np.random.normal(loc=6, size=30)])

    kde = stats.gaussian_kde(values)
    x = np.linspace(-5,10, 50)
    y = kde(x)
    print y
    r.plot(x, y, type="l", col="red")


    kde2 = gaussian_kde(values)
    y2 = kde2(x)
    r.lines(x, y2, col="blue", lty=2)

    raw_input("")



# -*- coding: utf-8 -*-
# <nbformat>3.0</nbformat>

# <codecell>

from biorpy import r, iimage

# <codecell>

iimage.start()
r.plot(range(5))
iimage.finish()

# <codecell>


Ejemplo n.º 5
0
# Using the biorpy wrapper

# <codecell>

import collections
import numpy
import pandas
from biorpy import r, plotting

# <codecell>

# converts numpy arrays transparently
x = numpy.arange(10)
y = x + numpy.random.normal(scale=0.5, size=10)
r.plot(x, y)

# <codecell>

result = r["wilcox.test"](range(5), range(5, 10))

# <codecell>

result

# <codecell>

result.names

# <codecell>